As a typical representative of the NP-complete problem, the traveling salesman problem(TSP) is widely utilized in computer networks, logistics distribution, and other fields. In this paper, a discrete lion swarm optim...As a typical representative of the NP-complete problem, the traveling salesman problem(TSP) is widely utilized in computer networks, logistics distribution, and other fields. In this paper, a discrete lion swarm optimization(DLSO) algorithm is proposed to solve the TSP. Firstly, we introduce discrete coding and order crossover operators in DLSO. Secondly, we use the complete 2-opt(C2-opt) algorithm to enhance the local search ability.Then in order to enhance the efficiency of the algorithm, a parallel discrete lion swarm optimization(PDLSO) algorithm is proposed.The PDLSO has multiple populations, and each sub-population independently runs the DLSO algorithm in parallel. We use the ring topology to transfer information between sub-populations. Experiments on some benchmarks TSP problems show that the DLSO algorithm has a better accuracy than other algorithms, and the PDLSO algorithm can effectively shorten the running time.展开更多
The traveling salesman problem( TSP) is a well-known combinatorial optimization problem as well as an NP-complete problem. A dynamic multi-swarm particle swarm optimization and ant colony optimization( DMPSO-ACO) was ...The traveling salesman problem( TSP) is a well-known combinatorial optimization problem as well as an NP-complete problem. A dynamic multi-swarm particle swarm optimization and ant colony optimization( DMPSO-ACO) was presented for TSP.The DMPSO-ACO combined the exploration capabilities of the dynamic multi-swarm particle swarm optimizer( DMPSO) and the stochastic exploitation of the ant colony optimization( ACO) for solving the traveling salesman problem. In the proposed hybrid algorithm,firstly,the dynamic swarms,rapidity of the PSO was used to obtain a series of sub-optimal solutions through certain iterative times for adjusting the initial allocation of pheromone in ACO. Secondly,the positive feedback and high accuracy of the ACO were employed to solving whole problem. Finally,to verify the effectiveness and efficiency of the proposed hybrid algorithm,various scale benchmark problems were tested to demonstrate the potential of the proposed DMPSO-ACO algorithm. The results show that DMPSO-ACO is better in the search precision,convergence property and has strong ability to escape from the local sub-optima when compared with several other peer algorithms.展开更多
Many problems in science,engineering and real life are related to the combinatorial optimization.However,many combinatorial optimization problems belong to a class of the NP-hard problems,and their globally optimal so...Many problems in science,engineering and real life are related to the combinatorial optimization.However,many combinatorial optimization problems belong to a class of the NP-hard problems,and their globally optimal solutions are usually difficult to solve.Therefore,great attention has been attracted to the algorithms of searching the globally optimal solution or near-optimal solution for the combinatorial optimization problems.As a typical combinatorial optimization problem,the traveling salesman problem(TSP)often serves as a touchstone for novel approaches.It has been found that natural systems,particularly brain nervous systems,work at the critical region between order and disorder,namely,on the edge of chaos.In this work,an algorithm for the combinatorial optimization problems is proposed based on the neural networks on the edge of chaos(ECNN).The algorithm is then applied to TSPs of 10 cities,21 cities,48 cities and 70 cities.The results show that ECNN algorithm has strong ability to drive the networks away from local minimums.Compared with the transiently chaotic neural network(TCNN),the stochastic chaotic neural network(SCNN)algorithms and other optimization algorithms,much higher rates of globally optimal solutions and near-optimal solutions are obtained with ECNN algorithm.To conclude,our algorithm provides an effective way for solving the combinatorial optimization problems.展开更多
This paper first introduces the concepts of mobile operators and mobile sequence, with which it redefines the rate of particle swarm optimization algorithm and the formula of position updating. Combining this discrete...This paper first introduces the concepts of mobile operators and mobile sequence, with which it redefines the rate of particle swarm optimization algorithm and the formula of position updating. Combining this discrete PSO algorithm with neighbors, the paper puts forward Hybrd Particle Swarm Optimization Algorithm, whose effectiveness is verified at the end of this paper.展开更多
Traveling salesman problem(TSP)is a classic non-deterministic polynomial-hard optimization prob-lem.Based on the characteristics of self-organizing mapping(SOM)network,this paper proposes an improved SOM network from ...Traveling salesman problem(TSP)is a classic non-deterministic polynomial-hard optimization prob-lem.Based on the characteristics of self-organizing mapping(SOM)network,this paper proposes an improved SOM network from the perspectives of network update strategy,initialization method,and parameter selection.This paper compares the performance of the proposed algorithms with the performance of existing SOM network algorithms on the TSP and compares them with several heuristic algorithms.Simulations show that compared with existing SOM networks,the improved SOM network proposed in this paper improves the convergence rate and algorithm accuracy.Compared with iterated local search and heuristic algorithms,the improved SOM net-work algorithms proposed in this paper have the advantage of fast calculation speed on medium-scale TSP.展开更多
The minimum weight dominating set problem (MWDSP) is an NP-hard problem with a lot of real-world applications. Several heuristic algorithms have been presented to produce good quality solutions. However, the solutio...The minimum weight dominating set problem (MWDSP) is an NP-hard problem with a lot of real-world applications. Several heuristic algorithms have been presented to produce good quality solutions. However, the solution time of them grows very quickly as the size of the instance increases. In this paper, we propose a binary particle swarm optimization (FBPSO) for solving the MWDSP approximately. Based on the characteristic of MWDSP, this approach designs a new position updating rule to guide the search to a promising area. An iterated greedy tabu search is used to enhance the solution quality quickly. In addition, several stochastic strategies are employed to diversify the search and prevent premature convergence. These methods maintain a good balance between the exploration and the exploitation. Experimental studies on 106 groups of 1 060 instances show that FBPSO is able to identify near optimal solutions in a short running time. The average deviation between the solutions obtained by FBPSO and the best known solutions is 0.441%. Moreover, the average solution time of FBPSO is much less than that of other existing algorithms. In particular, with the increasing of instance size, the solution time of FBPSO grows much more slowly than that of other existing algorithms.展开更多
Combinatorial optimization problems are found in many application fields such as computer science, engineering and economy. In this paper, a new efficient meta-heuristic, Intersection-Based Scaling (IBS for abbreviati...Combinatorial optimization problems are found in many application fields such as computer science, engineering and economy. In this paper, a new efficient meta-heuristic, Intersection-Based Scaling (IBS for abbreviation), is proposed and it can be applied to the combinatorial optimization problems. The main idea of IBS is to scale the size of the instance based on the intersection of some local optima, and to simplify the search space by extracting the intersection from the instance, which makes the search more efficient. The combination of IBS with some local search heuristics of different combinatorial optimization problems such as Traveling Salesman Problem (TSP) and Graph Partitioning Problem (GPP) is studied, and comparisons are made with some of the best heuristic algorithms and meta-heuristic algorithms. It is found that it has significantly improved the performance of existing local search heuristics and significantly outperforms the known best algorithms. Keywords combinatorial optimization - TSP (Traveling Salesman Problem) - GPP (Graph Partitioning Problem) - IBS (Intersection-Based Scaling) - meta heuristic Regular PaperThis work is supported by the National Basic Research 973 Program of China (Grant No.TG1998030401).Peng Zou was born in 1979. He received the B.S. degree in computer software from University of Science and Technology of China (USTC) in 2000. Now he is a Ph.D. candidate in computer science of USTC. His current research interests include algorithms for NP-hard problems and parallel computing.Zhi Zhou was born in 1976. He received the B.S. degree in computer software from USTC in 1995. Now he is a Ph.D. candidate in computer science of USTC. His current research interests include combinatorial problem and parallel computing.Ying-Yu Wan was born in 1976. He received the B.S. degree in computer software from USTC in 1997, and the Ph.D. degree from USTC in 2002. His current research interests include parallel computing and combinatorial problem.Guo-Liang Chen was born in 1938. Now he is an Academician of CAS and Ph.D. supervisor in Department of Computer Science at USTC, director of the National High Performance Computing Center at Hefei. His current research interests include parallel computing, computer architecture and combinatorial optimization.Jun Gu was born in 1956. He received the B.S. degree in electronic engineering from USTC in 1982, and the Ph.D. degree in computer science from University of Utah. Now he is a professor and Ph.D. supervisor in computer science at USTC and Hong Kong University of Science and Technology. His main research interrests include algorithms for NP-hard problems.展开更多
Traveling salesman problem(TSP) is one of the typical NP-hard problems, and it has been used in many engineering applications. However, the previous swarm intelligence(SI) based algorithms for TSP cannot coordinate wi...Traveling salesman problem(TSP) is one of the typical NP-hard problems, and it has been used in many engineering applications. However, the previous swarm intelligence(SI) based algorithms for TSP cannot coordinate with the exploration and exploitation abilities and are easily trapped into local optimum. In order to deal with this situation, a new hybrid optimization algorithm based on wolf pack search and local search(WPS-LS)is proposed for TSP. The new method firstly simulates the predatory process of wolf pack from the broad field to a specific place so that it allows for a search through all possible solution spaces and prevents wolf individuals from getting trapped into local optimum. Then, local search operation is used in the algorithm to improve the speed of solving and the accuracy of solution. The test of benchmarks selected from TSPLIB shows that the results obtained by this algorithm are better and closer to the theoretical optimal values with better robustness than those obtained by other methods.展开更多
This paper presents a simulated annealing based algorithm for traveling salesman problem (SATSP),which was applied to the symmetrical traveling salesman problem about 31 cities of China and proved to be the best of a...This paper presents a simulated annealing based algorithm for traveling salesman problem (SATSP),which was applied to the symmetrical traveling salesman problem about 31 cities of China and proved to be the best of all the algorithms at present.展开更多
基金supported by the National Natural Science Foundation of China(61771293)the Key Project of Shangdong Province(2019JZZY010111)。
文摘As a typical representative of the NP-complete problem, the traveling salesman problem(TSP) is widely utilized in computer networks, logistics distribution, and other fields. In this paper, a discrete lion swarm optimization(DLSO) algorithm is proposed to solve the TSP. Firstly, we introduce discrete coding and order crossover operators in DLSO. Secondly, we use the complete 2-opt(C2-opt) algorithm to enhance the local search ability.Then in order to enhance the efficiency of the algorithm, a parallel discrete lion swarm optimization(PDLSO) algorithm is proposed.The PDLSO has multiple populations, and each sub-population independently runs the DLSO algorithm in parallel. We use the ring topology to transfer information between sub-populations. Experiments on some benchmarks TSP problems show that the DLSO algorithm has a better accuracy than other algorithms, and the PDLSO algorithm can effectively shorten the running time.
基金National Natural Science Foundation of China(No.70971020)the Subject of Ministry of Education of Hunan Province,China(No.13C818)+3 种基金the Project of Industrial Science and Technology Support of Hengyang City,Hunan Province,China(No.2013KG63)the Open Project Program of Artificial Intelligence Key Laboratory of Sichuan Province,Sichuan University of Science and Engineering,China(No.2012RYJ03)the Fund Project of Humanities and Social Sciences,Ministry of Education of China(No.13YJCZH147)the Special Fund for Shanghai Colleges' Outstanding Young Teachers' Scientific Research Projects,China(No.ZZGJD12033)
文摘The traveling salesman problem( TSP) is a well-known combinatorial optimization problem as well as an NP-complete problem. A dynamic multi-swarm particle swarm optimization and ant colony optimization( DMPSO-ACO) was presented for TSP.The DMPSO-ACO combined the exploration capabilities of the dynamic multi-swarm particle swarm optimizer( DMPSO) and the stochastic exploitation of the ant colony optimization( ACO) for solving the traveling salesman problem. In the proposed hybrid algorithm,firstly,the dynamic swarms,rapidity of the PSO was used to obtain a series of sub-optimal solutions through certain iterative times for adjusting the initial allocation of pheromone in ACO. Secondly,the positive feedback and high accuracy of the ACO were employed to solving whole problem. Finally,to verify the effectiveness and efficiency of the proposed hybrid algorithm,various scale benchmark problems were tested to demonstrate the potential of the proposed DMPSO-ACO algorithm. The results show that DMPSO-ACO is better in the search precision,convergence property and has strong ability to escape from the local sub-optima when compared with several other peer algorithms.
基金supported by the National Natural Science Foundation of China(Grant No.12074335)the National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant No.2016YFA0300402).
文摘Many problems in science,engineering and real life are related to the combinatorial optimization.However,many combinatorial optimization problems belong to a class of the NP-hard problems,and their globally optimal solutions are usually difficult to solve.Therefore,great attention has been attracted to the algorithms of searching the globally optimal solution or near-optimal solution for the combinatorial optimization problems.As a typical combinatorial optimization problem,the traveling salesman problem(TSP)often serves as a touchstone for novel approaches.It has been found that natural systems,particularly brain nervous systems,work at the critical region between order and disorder,namely,on the edge of chaos.In this work,an algorithm for the combinatorial optimization problems is proposed based on the neural networks on the edge of chaos(ECNN).The algorithm is then applied to TSPs of 10 cities,21 cities,48 cities and 70 cities.The results show that ECNN algorithm has strong ability to drive the networks away from local minimums.Compared with the transiently chaotic neural network(TCNN),the stochastic chaotic neural network(SCNN)algorithms and other optimization algorithms,much higher rates of globally optimal solutions and near-optimal solutions are obtained with ECNN algorithm.To conclude,our algorithm provides an effective way for solving the combinatorial optimization problems.
文摘This paper first introduces the concepts of mobile operators and mobile sequence, with which it redefines the rate of particle swarm optimization algorithm and the formula of position updating. Combining this discrete PSO algorithm with neighbors, the paper puts forward Hybrd Particle Swarm Optimization Algorithm, whose effectiveness is verified at the end of this paper.
基金the National Natural Science Foundation of China (No.61627810)the National Science and Technology Major Program of China (No.2018YFB1305003)the National Defense Science and Technology Outstanding Youth Science Foundation (No.2017-JCJQ-ZQ-031)。
文摘Traveling salesman problem(TSP)is a classic non-deterministic polynomial-hard optimization prob-lem.Based on the characteristics of self-organizing mapping(SOM)network,this paper proposes an improved SOM network from the perspectives of network update strategy,initialization method,and parameter selection.This paper compares the performance of the proposed algorithms with the performance of existing SOM network algorithms on the TSP and compares them with several heuristic algorithms.Simulations show that compared with existing SOM networks,the improved SOM network proposed in this paper improves the convergence rate and algorithm accuracy.Compared with iterated local search and heuristic algorithms,the improved SOM net-work algorithms proposed in this paper have the advantage of fast calculation speed on medium-scale TSP.
基金This work is supported partially by the National Natural Science Foundation of China under Grant No. 11301255, the Natural Science Foundation of Fujian Province of China under Grant No. 2016J01025, and the Program for New Century Excellent Talents in Fujian Province University.
文摘The minimum weight dominating set problem (MWDSP) is an NP-hard problem with a lot of real-world applications. Several heuristic algorithms have been presented to produce good quality solutions. However, the solution time of them grows very quickly as the size of the instance increases. In this paper, we propose a binary particle swarm optimization (FBPSO) for solving the MWDSP approximately. Based on the characteristic of MWDSP, this approach designs a new position updating rule to guide the search to a promising area. An iterated greedy tabu search is used to enhance the solution quality quickly. In addition, several stochastic strategies are employed to diversify the search and prevent premature convergence. These methods maintain a good balance between the exploration and the exploitation. Experimental studies on 106 groups of 1 060 instances show that FBPSO is able to identify near optimal solutions in a short running time. The average deviation between the solutions obtained by FBPSO and the best known solutions is 0.441%. Moreover, the average solution time of FBPSO is much less than that of other existing algorithms. In particular, with the increasing of instance size, the solution time of FBPSO grows much more slowly than that of other existing algorithms.
文摘Combinatorial optimization problems are found in many application fields such as computer science, engineering and economy. In this paper, a new efficient meta-heuristic, Intersection-Based Scaling (IBS for abbreviation), is proposed and it can be applied to the combinatorial optimization problems. The main idea of IBS is to scale the size of the instance based on the intersection of some local optima, and to simplify the search space by extracting the intersection from the instance, which makes the search more efficient. The combination of IBS with some local search heuristics of different combinatorial optimization problems such as Traveling Salesman Problem (TSP) and Graph Partitioning Problem (GPP) is studied, and comparisons are made with some of the best heuristic algorithms and meta-heuristic algorithms. It is found that it has significantly improved the performance of existing local search heuristics and significantly outperforms the known best algorithms. Keywords combinatorial optimization - TSP (Traveling Salesman Problem) - GPP (Graph Partitioning Problem) - IBS (Intersection-Based Scaling) - meta heuristic Regular PaperThis work is supported by the National Basic Research 973 Program of China (Grant No.TG1998030401).Peng Zou was born in 1979. He received the B.S. degree in computer software from University of Science and Technology of China (USTC) in 2000. Now he is a Ph.D. candidate in computer science of USTC. His current research interests include algorithms for NP-hard problems and parallel computing.Zhi Zhou was born in 1976. He received the B.S. degree in computer software from USTC in 1995. Now he is a Ph.D. candidate in computer science of USTC. His current research interests include combinatorial problem and parallel computing.Ying-Yu Wan was born in 1976. He received the B.S. degree in computer software from USTC in 1997, and the Ph.D. degree from USTC in 2002. His current research interests include parallel computing and combinatorial problem.Guo-Liang Chen was born in 1938. Now he is an Academician of CAS and Ph.D. supervisor in Department of Computer Science at USTC, director of the National High Performance Computing Center at Hefei. His current research interests include parallel computing, computer architecture and combinatorial optimization.Jun Gu was born in 1956. He received the B.S. degree in electronic engineering from USTC in 1982, and the Ph.D. degree in computer science from University of Utah. Now he is a professor and Ph.D. supervisor in computer science at USTC and Hong Kong University of Science and Technology. His main research interrests include algorithms for NP-hard problems.
基金the National Natural Science Foundation of China(No.61502198)the Science&Technology Development Project of Jilin Province(Nos.20180101334JC and 20190302117GX)the"3th-Five Year" Science and Technology Research Project of Education Department of Jilin Province(No.JJKH20170574KJ)
文摘Traveling salesman problem(TSP) is one of the typical NP-hard problems, and it has been used in many engineering applications. However, the previous swarm intelligence(SI) based algorithms for TSP cannot coordinate with the exploration and exploitation abilities and are easily trapped into local optimum. In order to deal with this situation, a new hybrid optimization algorithm based on wolf pack search and local search(WPS-LS)is proposed for TSP. The new method firstly simulates the predatory process of wolf pack from the broad field to a specific place so that it allows for a search through all possible solution spaces and prevents wolf individuals from getting trapped into local optimum. Then, local search operation is used in the algorithm to improve the speed of solving and the accuracy of solution. The test of benchmarks selected from TSPLIB shows that the results obtained by this algorithm are better and closer to the theoretical optimal values with better robustness than those obtained by other methods.
文摘This paper presents a simulated annealing based algorithm for traveling salesman problem (SATSP),which was applied to the symmetrical traveling salesman problem about 31 cities of China and proved to be the best of all the algorithms at present.