期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
A Novel Framework for DDoS Attacks Detection Using Hybrid LSTM Techniques 被引量:2
1
作者 Anitha Thangasamy Bose Sundan Logeswari Govindaraj 《Computer Systems Science & Engineering》 SCIE EI 2023年第6期2553-2567,共15页
The recent development of cloud computing offers various services on demand for organization and individual users,such as storage,shared computing space,networking,etc.Although Cloud Computing provides various advanta... The recent development of cloud computing offers various services on demand for organization and individual users,such as storage,shared computing space,networking,etc.Although Cloud Computing provides various advantages for users,it remains vulnerable to many types of attacks that attract cyber criminals.Distributed Denial of Service(DDoS)is the most common type of attack on cloud computing.Consequently,Cloud computing professionals and security experts have focused on the growth of preventive processes towards DDoS attacks.Since DDoS attacks have become increasingly widespread,it becomes difficult for some DDoS attack methods based on individual network flow features to distinguish various types of DDoS attacks.Further,the monitoring pattern of traffic changes and accurate detection of DDoS attacks are most important and urgent.In this research work,DDoS attack detection methods based on deep belief network feature extraction and Hybrid Long Short-Term Memory(LSTM)model have been proposed with NSL-KDD dataset.In Hybrid LSTM method,the Particle Swarm Optimization(PSO)technique,which is combined to optimize the weights of the LSTM neural network,reduces the prediction error.This deep belief network method is used to extract the features of IP packets,and it identifies DDoS attacks based on PSO-LSTM model.Moreover,it accurately predicts normal network traffic and detects anomalies resulting from DDoS attacks.The proposed PSO-LSTM architecture outperforms the classification techniques including standard Support Vector Machine(SVM)and LSTM in terms of attack detection performance along with the results of the measurement of accuracy,recall,f-measure,precision. 展开更多
关键词 Cloud computing distributed denial of service particle swarm optimization long short-term memory attack detection
下载PDF
Measuring moisture content of dead fine fuels based on the fusion of spectrum meteorological data
2
作者 Bo Peng Jiawei Zhang +2 位作者 Jian Xing Jiuqing Liu Mingbao Li 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第5期1333-1346,共14页
Dead fine fuel moisture content(DFFMC)is a key factor affecting the spread of forest fires,which plays an important role in evaluation of forest fire risk.In order to achieve high-precision real-time measurement of DF... Dead fine fuel moisture content(DFFMC)is a key factor affecting the spread of forest fires,which plays an important role in evaluation of forest fire risk.In order to achieve high-precision real-time measurement of DFFMC,this study established a long short-term memory(LSTM)network based on particle swarm optimization(PSO)algorithm as a measurement model.A multi-point surface monitoring scheme combining near-infrared measurement method and meteorological measurement method is proposed.The near-infrared spectral information of dead fine fuels and the meteorological factors in the region are processed by data fusion technology to construct a spectral-meteorological data set.The surface fine dead fuel of Mongolian oak(Quercus mongolica Fisch.ex Ledeb.),white birch(Betula platyphylla Suk.),larch(Larix gmelinii(Rupr.)Kuzen.),and Manchurian walnut(Juglans mandshurica Maxim.)in the maoershan experimental forest farm of the Northeast Forestry University were investigated.We used the PSO-LSTM model for moisture content to compare the near-infrared spectroscopy,meteorological,and spectral meteorological fusion methods.The results show that the mean absolute error of the DFFMC of the four stands by spectral meteorological fusion method were 1.1%for Mongolian oak,1.3%for white birch,1.4%for larch,and 1.8%for Manchurian walnut,and these values were lower than those of the near-infrared method and the meteorological method.The spectral meteorological fusion method provides a new way for high-precision measurement of moisture content of fine dead fuel. 展开更多
关键词 Near infrared spectroscopy Meteorological factors Data fusion Long-term and short-term memory network particle swarm optimization algorithm
下载PDF
Production optimization under waterflooding with long short-term memory and metaheuristic algorithm
3
作者 Cuthbert Shang Wui Ng Ashkan Jahanbani Ghahfarokhi Menad Nait Amar 《Petroleum》 EI CSCD 2023年第1期53-60,共8页
In petroleum domain,optimizing hydrocarbon production is essential because it does not only ensure the economic prospects of the petroleum companies,but also fulfills the increasing global demand of energy.However,app... In petroleum domain,optimizing hydrocarbon production is essential because it does not only ensure the economic prospects of the petroleum companies,but also fulfills the increasing global demand of energy.However,applying numerical reservoir simulation(NRS)to optimize production can induce high computational footprint.Proxy models are suggested to alleviate this challenge because they are computationally less demanding and able to yield reasonably accurate results.In this paper,we demonstrated how a machine learning technique,namely long short-term memory(LSTM),was applied to develop proxies of a 3D reservoir model.Sampling techniques were employed to create numerous simulation cases which served as the training database to establish the proxies.Upon blind validating the trained proxies,we coupled these proxies with particle swarm optimization to conduct production optimization.Both training and blind validation results illustrated that the proxies had been excellently developed with coefficient of determination,R2 of 0.99.We also compared the optimization results produced by NRS and the proxies.The comparison recorded a good level of accuracy that was within 3%error.The proxies were also computationally 3 times faster than NRS.Hence,the proxies have served their practical purposes in this study. 展开更多
关键词 Production optimization Numerical reservoir simulation Machine learning Long short-term memory(LSTM) Dynamic proxies particle swarm optimization(PSO)
原文传递
ECGID:a human identification method based on adaptive particle swarm optimization and the bidirectional LSTM model 被引量:2
4
作者 Yefei ZHANG Zhidong ZHAO +2 位作者 Yanjun DENG Xiaohong ZHANG Yu ZHANG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2021年第12期1641-1654,共14页
Physiological signal based biometric analysis has recently attracted attention as a means of meeting increasing privacy and security requirements.The real-time nature of an electrocardiogram(ECG)and the hidden nature ... Physiological signal based biometric analysis has recently attracted attention as a means of meeting increasing privacy and security requirements.The real-time nature of an electrocardiogram(ECG)and the hidden nature of the information make it highly resistant to attacks.This paper focuses on three major bottlenecks of existing deep learning driven approaches:the lengthy time requirements for optimizing the hyperparameters,the slow and computationally intense identification process,and the unstable and complicated nature of ECG acquisition.We present a novel deep neural network framework for learning human identification feature representations directly from ECG time series.The proposed framework integrates deep bidirectional long short-term memory(BLSTM)and adaptive particle swarm optimization(APSO).The overall approach not only avoids the inefficient and experience-dependent search for hyperparameters,but also fully exploits the spatial information of ordinal local features and the memory characteristics of a recognition algorithm.The effectiveness of the proposed approach is thoroughly evaluated in two ECG datasets,using two protocols,simulating the influence of electrode placement and acquisition sessions in identification.Comparing four recurrent neural network structures and four classical machine learning and deep learning algorithms,we prove the superiority of the proposed algorithm in minimizing overfitting and self-learning of time series.The experimental results demonstrated an average identification rate of 97.71%,99.41%,and 98.89% in training,validation,and test sets,respectively.Thus,this study proves that the application of APSO and LSTM techniques to biometric human identification can achieve a lower algorithm engineering effort and higher capacity for generalization. 展开更多
关键词 ECG biometrics Human identification Long short-term memory(LSTM) Adaptive particle swarm optimization(APSO)
原文传递
Dynamic time prediction for electric vehicle charging based on charging pattern recognition
5
作者 Chunxi LI Yingying FU +1 位作者 Xiangke CUI Quanbo GE 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2023年第2期299-313,共15页
Overcharging is an important safety issue in the charging process of electric vehicle power batteries,and can easily lead to accelerated battery aging and serious safety accidents.It is necessary to accurately predict... Overcharging is an important safety issue in the charging process of electric vehicle power batteries,and can easily lead to accelerated battery aging and serious safety accidents.It is necessary to accurately predict the vehicle’s charging time to effectively prevent the battery from overcharging.Due to the complex structure of the battery pack and various charging modes,the traditional charging time prediction method often encounters modeling difficulties and low accuracy.In response to the above problems,data drivers and machine learning theories are applied.On the basis of fully considering the different electric vehicle battery management system(BMS)charging modes,a charging time prediction method with charging mode recognition is proposed.First,an intelligent algorithm based on dynamic weighted density peak clustering(DWDPC)and random forest fusion is proposed to classify vehicle charging modes.Then,on the basis of an improved simplified particle swarm optimization(ISPSO)algorithm,a high-performance charging time prediction method is constructed by fully integrating long short-term memory(LSTM)and a strong tracking filter.Finally,the data run by the actual engineering system are verified for the proposed charging time prediction algorithm.Experimental results show that the new method can effectively distinguish the charging modes of different vehicles,identify the charging characteristics of different electric vehicles,and achieve high prediction accuracy. 展开更多
关键词 Charging mode Charging time Random forest Long short-term memory(LSTM) Simplified particle swarm optimization(SPSO)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部