The indicators of flood damage assessment in the flood classification are often incompatible, and it is very difficult to use those indicators value directly for classification assessment. Projection pursuit technolog...The indicators of flood damage assessment in the flood classification are often incompatible, and it is very difficult to use those indicators value directly for classification assessment. Projection pursuit technology can project higher dimensional incompatible data into lower dimensional sub-space, and find the projection values for optimal projection index function to get the higher dimensional data structure features, which has been improved to be reasonable and effective for flood disaster classification assessment. However, it is a bit difficult to optimize the parameters of projection index functions, as a result, that limits the applications of this method. As an emerging heuristic global optimization algorithm based on swarm intelligence, particle swarm optimization algorithm has the ability of solving complex optimization problem, but it still be easily convergent early, and can not search the global optimal solution. In this paper, a flood disaster classification assessment method based on multi-swarm cooperative particle swarm optimization is proposed, which adopts a tri-parameter Logistic curve to construct the flood disaster projection pursuit model, and uses mul-ti-swarm system particle swarm optimization method to optimize the parameters of the projection index functions. The typical test function experiment shows that this optimization method can solve the early convergence commonly found in standard particle swarm optimization algorithm, which global optimized ability is improved greatly. Applied in flood disaster assessment in HeNan Province, the results using this method comparing with others indicates that it can assess effectively the flood disaster, and has better assessment accuracy and disaster resolution.展开更多
In the research of projection pursuit for seismic comprehensive forecast, the algorithm of projection pursuit regression (PPR) is one of most applicable methods. But generally, the algorithm structure of the PPR is ...In the research of projection pursuit for seismic comprehensive forecast, the algorithm of projection pursuit regression (PPR) is one of most applicable methods. But generally, the algorithm structure of the PPR is very complicated. By partial smooth regressions for many times, it has a large amount of calculation and complicated extrapolation, so it is easily trapped in partial solution. On the basis of the algorithm features of the PPR method, some solutions are given as below to aim at some shortcomings in the PPR calculation: to optimize project direction by using particle swarm optimization instead of Gauss-Newton algorithm, to simplify the optimal process with fitting ridge function by using Hermitian polynomial instead of piecewise linear regression. The overall optimal ridge function can be obtained without grouping the parameter optimization. The modeling capability and calculating accuracy of projection pursuit method are tested by means of numerical emulation technique on the basis of particle swarm optimization and Hermitian polynomial, and then applied to the seismic comprehensive forecasting models of poly-dimensional seismic time series and general disorder seismic samples. The calculation and analysis show that the projection pursuit model in this paper is characterized by simplicity, celerity and effectiveness. And this model is approved to have satisfactory effects in the real seismic comprehensive forecasting, which can be regarded as a comprehensive analysis method in seismic comprehensive forecast.展开更多
围岩的稳定性评价是一个复杂的不确定系统问题。结合投影寻踪方法、粒子群算法和逻辑斯谛曲线函数,建立了围岩稳定性评价的粒子群优化投影寻踪(projection pursuit based on particle swarm optimization,PSO-PP)模型。该模型一方面采...围岩的稳定性评价是一个复杂的不确定系统问题。结合投影寻踪方法、粒子群算法和逻辑斯谛曲线函数,建立了围岩稳定性评价的粒子群优化投影寻踪(projection pursuit based on particle swarm optimization,PSO-PP)模型。该模型一方面采用粒子群算法优化投影指标函数及逻辑斯谛曲线函数参数,确保了模型的准确性;另一方面利用逻辑斯谛曲线函数建立投影值与经验等级之间的非线性关系。模型的测试结果显示了良好的精度,实例分析结果与实际状态完全一致,表明该模型在围岩稳定性评价中的可行性和有效性。展开更多
文摘The indicators of flood damage assessment in the flood classification are often incompatible, and it is very difficult to use those indicators value directly for classification assessment. Projection pursuit technology can project higher dimensional incompatible data into lower dimensional sub-space, and find the projection values for optimal projection index function to get the higher dimensional data structure features, which has been improved to be reasonable and effective for flood disaster classification assessment. However, it is a bit difficult to optimize the parameters of projection index functions, as a result, that limits the applications of this method. As an emerging heuristic global optimization algorithm based on swarm intelligence, particle swarm optimization algorithm has the ability of solving complex optimization problem, but it still be easily convergent early, and can not search the global optimal solution. In this paper, a flood disaster classification assessment method based on multi-swarm cooperative particle swarm optimization is proposed, which adopts a tri-parameter Logistic curve to construct the flood disaster projection pursuit model, and uses mul-ti-swarm system particle swarm optimization method to optimize the parameters of the projection index functions. The typical test function experiment shows that this optimization method can solve the early convergence commonly found in standard particle swarm optimization algorithm, which global optimized ability is improved greatly. Applied in flood disaster assessment in HeNan Province, the results using this method comparing with others indicates that it can assess effectively the flood disaster, and has better assessment accuracy and disaster resolution.
文摘In the research of projection pursuit for seismic comprehensive forecast, the algorithm of projection pursuit regression (PPR) is one of most applicable methods. But generally, the algorithm structure of the PPR is very complicated. By partial smooth regressions for many times, it has a large amount of calculation and complicated extrapolation, so it is easily trapped in partial solution. On the basis of the algorithm features of the PPR method, some solutions are given as below to aim at some shortcomings in the PPR calculation: to optimize project direction by using particle swarm optimization instead of Gauss-Newton algorithm, to simplify the optimal process with fitting ridge function by using Hermitian polynomial instead of piecewise linear regression. The overall optimal ridge function can be obtained without grouping the parameter optimization. The modeling capability and calculating accuracy of projection pursuit method are tested by means of numerical emulation technique on the basis of particle swarm optimization and Hermitian polynomial, and then applied to the seismic comprehensive forecasting models of poly-dimensional seismic time series and general disorder seismic samples. The calculation and analysis show that the projection pursuit model in this paper is characterized by simplicity, celerity and effectiveness. And this model is approved to have satisfactory effects in the real seismic comprehensive forecasting, which can be regarded as a comprehensive analysis method in seismic comprehensive forecast.
文摘围岩的稳定性评价是一个复杂的不确定系统问题。结合投影寻踪方法、粒子群算法和逻辑斯谛曲线函数,建立了围岩稳定性评价的粒子群优化投影寻踪(projection pursuit based on particle swarm optimization,PSO-PP)模型。该模型一方面采用粒子群算法优化投影指标函数及逻辑斯谛曲线函数参数,确保了模型的准确性;另一方面利用逻辑斯谛曲线函数建立投影值与经验等级之间的非线性关系。模型的测试结果显示了良好的精度,实例分析结果与实际状态完全一致,表明该模型在围岩稳定性评价中的可行性和有效性。