A novel reaction-drying process was carried out in a spouted bed reactor with inert particles and used to prepare ultrafine CaCO3 particles. Effects of concentrations of CO2 and Ca(OH)2, and reaction temperature on Ca...A novel reaction-drying process was carried out in a spouted bed reactor with inert particles and used to prepare ultrafine CaCO3 particles. Effects of concentrations of CO2 and Ca(OH)2, and reaction temperature on Ca(OH)2 conversion were experimentally investigated. The particle sizes and composition of CaCO3 produced were characterized with transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results indicated that ultrafine CaCO3 particles with mean size of 80 nm could be obtained with this novel process.By modifying the Arrhenius Equation and considering the Ca(OH)2 state, a kinetic model was established to describe the process in the spouted bed. The model parameters estimated from the reaction-drying experiments were found to fit well the experimental data, indicating the applicability of the proposed kinetic model.展开更多
Production of light complex particles from the n+^238u reaction is analyzed with the exciton model including the improved Iwamoto-Harada pickup mechanism for the preequilibrium process. It is allowed that some of the...Production of light complex particles from the n+^238u reaction is analyzed with the exciton model including the improved Iwamoto-Harada pickup mechanism for the preequilibrium process. It is allowed that some of the nucleons forming the complex ejectile come from levels below the Fermi energy, and the intrinsic structure of the emitted particle is taken into account. The equilibrium-state emissions are also considered by using Hauser- Feshbach theory with the width fluctuation correction and the evaporation model angular distributions, energy spectra and double differential cross sections of neutron, alpha emissions for the n+^238U reaction are consistently calculated and analyzed with the energy range En ≤150 MeV. ENDF-formatted nuclear data including information charged particles are obtained. Moreover, all cross sections, proton, deuteron, triton and nuclear theoretical models in about the production of light展开更多
An energy minimum multiscale model was adjusted to simulate the mesoscale structure of the flue gas desulfurization process in a powder-particle spouted bed and verified experimentally.The obtained results revealed th...An energy minimum multiscale model was adjusted to simulate the mesoscale structure of the flue gas desulfurization process in a powder-particle spouted bed and verified experimentally.The obtained results revealed that the spout morphology simulated by the adjusted mesoscale drag model was unstable and discontinuous bubbling spout unlike the stable continuous spout obtained using the Gidaspow model.In addition,more thorough gas radial mixing was achieved using the adjusted mesoscale drag model.The mass fraction of water in the gas mixture at the outlet determined by the heterogeneous drag model was 1.5 times higher than that obtained by the homogeneous drag model during the simulation of water vaporization.For the desulfurization reaction,the experimental desulfurization efficiency was 75.03%,while the desulfurization efficiencies obtained by the Gidaspow and adjusted mesoscale drag models were 47.63%and 75.08%,respectively,indicating much higher accuracy of the latter technique.展开更多
Based on the Sierpinski carpet and Menger sponge models, two categories of fractal models of rock and soil which are composed of the volume fractal model of pores, the volume fractal model of grains, pore-size or part...Based on the Sierpinski carpet and Menger sponge models, two categories of fractal models of rock and soil which are composed of the volume fractal model of pores, the volume fractal model of grains, pore-size or particle-size distribution fractal models are established and their relations are clarified in this paper. Through comparison and analysis, it is found that previous models can be unified by the two categories of fractal models, so the unified fractal models are formed. Experimental results presented by Katz indicate that the first category of fractal models can be used to express the fractal behavior of sandstone. A scanning electron microscope (SEM) will be used to study the microstructure of soft clay and it will be testified that the fractal behavior of soft clay suits the second category of fractal models.展开更多
A fractal pore diffusion model of fluids in porous media which is in good agreement with the experimental data of the coke-CO2 reaction, has been derived by using the Mandelbrot's fractal length-area relation. Bas...A fractal pore diffusion model of fluids in porous media which is in good agreement with the experimental data of the coke-CO2 reaction, has been derived by using the Mandelbrot's fractal length-area relation. Based on the model, a new formula and its interpretation about the tortuosity of pore structures of a porous medium have been suggested, from which the fractal pore diffusion resistance has been defined. The resistance ascends obviously with the fractal pore dimension and the conversion ratio increasing, especially in the middle-latter period of fluid-solid reactions.展开更多
The alkali silica reaction (ASR) is one of the major long-term deterioration mechanisms occurring in con- crete structures subjected to high humidity levels, such as bridges and dams. ASR is a chemical reaction betwee...The alkali silica reaction (ASR) is one of the major long-term deterioration mechanisms occurring in con- crete structures subjected to high humidity levels, such as bridges and dams. ASR is a chemical reaction between the silica existing inside the aggregate pieces and the alkali ions from the cement paste. This chemical reaction produces ASR gel, which imbibes additional water, leading to gel swelling. Damage and cracking are subsequently generated in concrete, resulting in degradation of its mechanical proper- ties. In this study, ASR damage in concrete is considered within the lattice discrete particle model (LDPM), a mesoscale mechanical model that simulates concrete at the scale of the coarse aggregate pieces. The authors have already modeled successfully ASR within the LDPM framework and they have calibrated and validated the resulting model, entitled ASR-LDPM, against several experimental data sets. In the pre- sent work, a recently developed multiscale homogenization framework is employed to simulate the macroscale effects of ASR, while ASR-LDPM is utilized as the mesoscale model. First, the homogenized behavior of the representative volume element (RVE) of concrete simulated by ASR-LDPM is studied under both tension and compression, and the degradation of effective mechanical properties due to ASR over time is investigated. Next, the developed homogenization framework is utilized to reproduce experimental data reported on the free volumetric expansion of concrete prisms. Finally, the strength degradation of prisms in compression and four-point bending beams is evaluated by both the mesoscale model and the proposed multiscale approach in order to analyze the accuracy and computational ef - ciency of the latter. In all the numerical analyses, different RVE sizes with different inner particle realiza- tions are considered in order to explore their effects on the homogenized response.展开更多
The characterization of reinforcement in 15% SiC particles reinforced AI matrix composites processed by powder metallurgy route was studied by statistical method. During the analysis, a new approach for the estimation...The characterization of reinforcement in 15% SiC particles reinforced AI matrix composites processed by powder metallurgy route was studied by statistical method. During the analysis, a new approach for the estimation of the characterization of reinforcement was presented. The mathematic software MATLAB was used to calculate the area and perimeter of reinforcement, in which the image processing technique was applied. Based on the calculation, the fractal dimension, shape factor, reinforcement size distribution and reinforcement distribution were investigated. The results show that the reinforcement shape is similar to rectangle; the reinforcement size distribution is broad with the' range of 1-12 μm; the topography of reinforcement is smooth; and the reinforcement distribution is inhomogeneous. Furthermore, the cell model based on the statistical characterization was established and tested.展开更多
基金Supported by the Three-Item Science & Technology Foundation of Fujian Province(K02017)
文摘A novel reaction-drying process was carried out in a spouted bed reactor with inert particles and used to prepare ultrafine CaCO3 particles. Effects of concentrations of CO2 and Ca(OH)2, and reaction temperature on Ca(OH)2 conversion were experimentally investigated. The particle sizes and composition of CaCO3 produced were characterized with transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results indicated that ultrafine CaCO3 particles with mean size of 80 nm could be obtained with this novel process.By modifying the Arrhenius Equation and considering the Ca(OH)2 state, a kinetic model was established to describe the process in the spouted bed. The model parameters estimated from the reaction-drying experiments were found to fit well the experimental data, indicating the applicability of the proposed kinetic model.
基金Supported by National Natural Science Foundation of China-NSAF(U1630122)IAEA Coordinated Research Projects(CRPs)on Recommended Input Parameter Library(RIPL)for Fission Cross Section Calculations(20464)Science Challenge Project(TZ2018005)
文摘Production of light complex particles from the n+^238u reaction is analyzed with the exciton model including the improved Iwamoto-Harada pickup mechanism for the preequilibrium process. It is allowed that some of the nucleons forming the complex ejectile come from levels below the Fermi energy, and the intrinsic structure of the emitted particle is taken into account. The equilibrium-state emissions are also considered by using Hauser- Feshbach theory with the width fluctuation correction and the evaporation model angular distributions, energy spectra and double differential cross sections of neutron, alpha emissions for the n+^238U reaction are consistently calculated and analyzed with the energy range En ≤150 MeV. ENDF-formatted nuclear data including information charged particles are obtained. Moreover, all cross sections, proton, deuteron, triton and nuclear theoretical models in about the production of light
基金the National Natural Science Foundation of China(Grant No.21878245).
文摘An energy minimum multiscale model was adjusted to simulate the mesoscale structure of the flue gas desulfurization process in a powder-particle spouted bed and verified experimentally.The obtained results revealed that the spout morphology simulated by the adjusted mesoscale drag model was unstable and discontinuous bubbling spout unlike the stable continuous spout obtained using the Gidaspow model.In addition,more thorough gas radial mixing was achieved using the adjusted mesoscale drag model.The mass fraction of water in the gas mixture at the outlet determined by the heterogeneous drag model was 1.5 times higher than that obtained by the homogeneous drag model during the simulation of water vaporization.For the desulfurization reaction,the experimental desulfurization efficiency was 75.03%,while the desulfurization efficiencies obtained by the Gidaspow and adjusted mesoscale drag models were 47.63%and 75.08%,respectively,indicating much higher accuracy of the latter technique.
基金Supported by the National Natural Science Foundation of China (Grant No. 50778140)Special Research Foundation of Doctorial Subjects in Universities of China (Grant No. 20070497107)
文摘Based on the Sierpinski carpet and Menger sponge models, two categories of fractal models of rock and soil which are composed of the volume fractal model of pores, the volume fractal model of grains, pore-size or particle-size distribution fractal models are established and their relations are clarified in this paper. Through comparison and analysis, it is found that previous models can be unified by the two categories of fractal models, so the unified fractal models are formed. Experimental results presented by Katz indicate that the first category of fractal models can be used to express the fractal behavior of sandstone. A scanning electron microscope (SEM) will be used to study the microstructure of soft clay and it will be testified that the fractal behavior of soft clay suits the second category of fractal models.
文摘A fractal pore diffusion model of fluids in porous media which is in good agreement with the experimental data of the coke-CO2 reaction, has been derived by using the Mandelbrot's fractal length-area relation. Based on the model, a new formula and its interpretation about the tortuosity of pore structures of a porous medium have been suggested, from which the fractal pore diffusion resistance has been defined. The resistance ascends obviously with the fractal pore dimension and the conversion ratio increasing, especially in the middle-latter period of fluid-solid reactions.
文摘The alkali silica reaction (ASR) is one of the major long-term deterioration mechanisms occurring in con- crete structures subjected to high humidity levels, such as bridges and dams. ASR is a chemical reaction between the silica existing inside the aggregate pieces and the alkali ions from the cement paste. This chemical reaction produces ASR gel, which imbibes additional water, leading to gel swelling. Damage and cracking are subsequently generated in concrete, resulting in degradation of its mechanical proper- ties. In this study, ASR damage in concrete is considered within the lattice discrete particle model (LDPM), a mesoscale mechanical model that simulates concrete at the scale of the coarse aggregate pieces. The authors have already modeled successfully ASR within the LDPM framework and they have calibrated and validated the resulting model, entitled ASR-LDPM, against several experimental data sets. In the pre- sent work, a recently developed multiscale homogenization framework is employed to simulate the macroscale effects of ASR, while ASR-LDPM is utilized as the mesoscale model. First, the homogenized behavior of the representative volume element (RVE) of concrete simulated by ASR-LDPM is studied under both tension and compression, and the degradation of effective mechanical properties due to ASR over time is investigated. Next, the developed homogenization framework is utilized to reproduce experimental data reported on the free volumetric expansion of concrete prisms. Finally, the strength degradation of prisms in compression and four-point bending beams is evaluated by both the mesoscale model and the proposed multiscale approach in order to analyze the accuracy and computational ef - ciency of the latter. In all the numerical analyses, different RVE sizes with different inner particle realiza- tions are considered in order to explore their effects on the homogenized response.
文摘The characterization of reinforcement in 15% SiC particles reinforced AI matrix composites processed by powder metallurgy route was studied by statistical method. During the analysis, a new approach for the estimation of the characterization of reinforcement was presented. The mathematic software MATLAB was used to calculate the area and perimeter of reinforcement, in which the image processing technique was applied. Based on the calculation, the fractal dimension, shape factor, reinforcement size distribution and reinforcement distribution were investigated. The results show that the reinforcement shape is similar to rectangle; the reinforcement size distribution is broad with the' range of 1-12 μm; the topography of reinforcement is smooth; and the reinforcement distribution is inhomogeneous. Furthermore, the cell model based on the statistical characterization was established and tested.