The hot forming behavior,failure mechanism,and microstructure evolution of in-situ TiB_(2)particle-reinforced 7075 aluminum matrix composite were investigated by isothermal compression test under different deformation...The hot forming behavior,failure mechanism,and microstructure evolution of in-situ TiB_(2)particle-reinforced 7075 aluminum matrix composite were investigated by isothermal compression test under different deformation conditions of deformation temperatures of 300−450℃ and strain rates of 0.001^(−1)s^(−1).The results demonstrate that the failure behavior of the composite exhibits both particle fracture and interface debonding at low temperature and high strain rate,and dimple rupture of the matrix at high temperature and low strain rate.Full dynamic recrystallization,which improves the composite formability,occurs under conditions of high temperature(450℃)and low strain rate(0.001 s^(−1));the grain size of the matrix after hot compression was significantly smaller than that of traditional 7075Al and ex-situ particle reinforced 7075Al matrix composite.Based on the flow stress curves,a constitutive model describing the relationship of the flow stress,true strain,strain rate and temperature was proposed.Furthermore,the processing maps based on both the dynamic material modeling(DMM)and modified DMM(MDMM)were established to analyze flow instability domain of the composite and optimize hot forming processing parameters.The optimum processing domain was determined at temperatures of 425−450℃ and strain rates of 0.001−0.01 s^(−1),in which the fine grain microstructure can be gained and particle crack and interface debonding can be avoided.展开更多
Spherical micro-Ti particle(TiP)-reinforced AZ91 magnesium alloy composites were fabricated by semi-solid stirring assisted ultrasonic vibration,which were then subjected to hot extrusion.The microstructure results sh...Spherical micro-Ti particle(TiP)-reinforced AZ91 magnesium alloy composites were fabricated by semi-solid stirring assisted ultrasonic vibration,which were then subjected to hot extrusion.The microstructure results showed that the addition of Ti particles refined the grain size and decreased the texture intensity of the as-extruded AZ91 alloy.An Al3Ti phase with a thickness of 100 nm formed at the Ti/Mg interface,which had a non-coherent relationship with the magnesium matrix.The as-extruded 1 vol.%TiP/AZ91 composite exhibited the best comprehensive mechanical properties,with yield strength,ultimate tensile strength,and elongation at break of 366 MPa,456 MPa,and 14.6%,respectively,which were significantly higher than those of the AZ91 alloy.Therefore,the addition of Ti particles can improve the strength and ductility of the AZ91 alloy,demonstrating the value of magnesium matrix composites for commercial applications.展开更多
Based on YU’s solids and molecules emperical electron theory(EET), interface valence electron structure of TiC-Fe3Al composites was set up, and the valence electron density of different atomic states TiC and Fe3Al co...Based on YU’s solids and molecules emperical electron theory(EET), interface valence electron structure of TiC-Fe3Al composites was set up, and the valence electron density of different atomic states TiC and Fe3Al composites in various planes was determined. The results indicate that the electron density of (1 00)Fe3Al is consistent with that of (110)TiC in the first-class a pproximation, the absolute value of minimum electron density difference along the interface is 0.007 37 nm?2, and the relative value is 0.759%. (1 10)TiC //(100)Fe3Al preferred orientation is believed to benefit the formation of the cuboidal shape TiC. In the other hand, it shows that the particle growth is accompanied by the transport of electron, the deviation continuity of electron density intrinsically hinders the grain growth. The electron density of (100)TiC is not consistent with Fe3Al arbitrary crystallographic plane, thus it well explains that the increased titanium and carbon contents do not increase the size of large particles. The crystallographic orientation of (1 10)TiC //(100)Fe3Al will improve the mechanical properties. Therefore interface electron theory is an effective theoretical implement for designing excellent property of composites.展开更多
The microstructures and interface structures of basalt particle reinforced 7A04 Al matrix composites (BP/7A04 Al) were analyzed by using OM, TEM, SEM and EDS, and the mechanical properties of 7A04 Al alloy were compar...The microstructures and interface structures of basalt particle reinforced 7A04 Al matrix composites (BP/7A04 Al) were analyzed by using OM, TEM, SEM and EDS, and the mechanical properties of 7A04 Al alloy were compared with those of BP/7A04 Al matrix composites. The results show that the basalt particles are dispersed in the Al matrix and form a strong bonding interface with the Al matrix. SiO2 at the edge of the basalt particles is continuously replaced by Al2O3 formed in the reaction, forming a high-temperature reaction layer with a thickness of several tens of nanometers, and Al2O3 strengthens the bonding interface between basalt particles and Al matrix. The dispersed basalt particles promote the dislocation multiplication, vacancy formation and precipitation of the matrix, and the precipitated phases mainly consist of plate-like η(MgZn2) phase and bright white band-shaped or ellipsoidal T (Al2Mg3Zn3) phase. The bonding interface, high dislocation density and dispersion strengthening phase significantly improve the mechanical properties of the composites. The yield strength and ultimate tensile strength of BP/7A04 Al matrix composites are up to 665 and 699 MPa, which increase by 11.4% and 10.9% respectively compared with 7A04 Al alloy without basalt particles.展开更多
基金the National Science and Technology Major Project of the Ministry of Science and Technology of China(No.2018-ZX04044001-008)the National Natural Science Foundation of China(No.52075328).
文摘The hot forming behavior,failure mechanism,and microstructure evolution of in-situ TiB_(2)particle-reinforced 7075 aluminum matrix composite were investigated by isothermal compression test under different deformation conditions of deformation temperatures of 300−450℃ and strain rates of 0.001^(−1)s^(−1).The results demonstrate that the failure behavior of the composite exhibits both particle fracture and interface debonding at low temperature and high strain rate,and dimple rupture of the matrix at high temperature and low strain rate.Full dynamic recrystallization,which improves the composite formability,occurs under conditions of high temperature(450℃)and low strain rate(0.001 s^(−1));the grain size of the matrix after hot compression was significantly smaller than that of traditional 7075Al and ex-situ particle reinforced 7075Al matrix composite.Based on the flow stress curves,a constitutive model describing the relationship of the flow stress,true strain,strain rate and temperature was proposed.Furthermore,the processing maps based on both the dynamic material modeling(DMM)and modified DMM(MDMM)were established to analyze flow instability domain of the composite and optimize hot forming processing parameters.The optimum processing domain was determined at temperatures of 425−450℃ and strain rates of 0.001−0.01 s^(−1),in which the fine grain microstructure can be gained and particle crack and interface debonding can be avoided.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research (2020B0301030006)the Guangdong Academy of Sciences'Project of Science and Technology Development (2020GDASYL-20200101001).
文摘Spherical micro-Ti particle(TiP)-reinforced AZ91 magnesium alloy composites were fabricated by semi-solid stirring assisted ultrasonic vibration,which were then subjected to hot extrusion.The microstructure results showed that the addition of Ti particles refined the grain size and decreased the texture intensity of the as-extruded AZ91 alloy.An Al3Ti phase with a thickness of 100 nm formed at the Ti/Mg interface,which had a non-coherent relationship with the magnesium matrix.The as-extruded 1 vol.%TiP/AZ91 composite exhibited the best comprehensive mechanical properties,with yield strength,ultimate tensile strength,and elongation at break of 366 MPa,456 MPa,and 14.6%,respectively,which were significantly higher than those of the AZ91 alloy.Therefore,the addition of Ti particles can improve the strength and ductility of the AZ91 alloy,demonstrating the value of magnesium matrix composites for commercial applications.
基金Project(Q99F01) supported by the Natural Science Foundation of Shandong Province, China
文摘Based on YU’s solids and molecules emperical electron theory(EET), interface valence electron structure of TiC-Fe3Al composites was set up, and the valence electron density of different atomic states TiC and Fe3Al composites in various planes was determined. The results indicate that the electron density of (1 00)Fe3Al is consistent with that of (110)TiC in the first-class a pproximation, the absolute value of minimum electron density difference along the interface is 0.007 37 nm?2, and the relative value is 0.759%. (1 10)TiC //(100)Fe3Al preferred orientation is believed to benefit the formation of the cuboidal shape TiC. In the other hand, it shows that the particle growth is accompanied by the transport of electron, the deviation continuity of electron density intrinsically hinders the grain growth. The electron density of (100)TiC is not consistent with Fe3Al arbitrary crystallographic plane, thus it well explains that the increased titanium and carbon contents do not increase the size of large particles. The crystallographic orientation of (1 10)TiC //(100)Fe3Al will improve the mechanical properties. Therefore interface electron theory is an effective theoretical implement for designing excellent property of composites.
基金Projects(2019JJ60050,2018JJ3121) supported by the Natural Science Foundation of Hunan Province,ChinaProject(KFBM20170004) supported by the Jiangsu Province Key Laboratory of Materials Surface Science and Technology,China
文摘The microstructures and interface structures of basalt particle reinforced 7A04 Al matrix composites (BP/7A04 Al) were analyzed by using OM, TEM, SEM and EDS, and the mechanical properties of 7A04 Al alloy were compared with those of BP/7A04 Al matrix composites. The results show that the basalt particles are dispersed in the Al matrix and form a strong bonding interface with the Al matrix. SiO2 at the edge of the basalt particles is continuously replaced by Al2O3 formed in the reaction, forming a high-temperature reaction layer with a thickness of several tens of nanometers, and Al2O3 strengthens the bonding interface between basalt particles and Al matrix. The dispersed basalt particles promote the dislocation multiplication, vacancy formation and precipitation of the matrix, and the precipitated phases mainly consist of plate-like η(MgZn2) phase and bright white band-shaped or ellipsoidal T (Al2Mg3Zn3) phase. The bonding interface, high dislocation density and dispersion strengthening phase significantly improve the mechanical properties of the composites. The yield strength and ultimate tensile strength of BP/7A04 Al matrix composites are up to 665 and 699 MPa, which increase by 11.4% and 10.9% respectively compared with 7A04 Al alloy without basalt particles.
基金the National Natural Science Foundation of China(Nos.U1760201,52034005,51974220)the Key Research and Development Program of Shaanxi Province,China(Nos.2020ZDLGY13-06,2017ZDXM-GY-037)+1 种基金the Innovation Capacity Support Project of Shaanxi Province-Nova Program,China(No.2020KJXX-077)the Science Fund for Distinguished Young Scholars in Universities of Shaanxi Province,China。