In this article,the empirical Bayes(EB)estimators are constructed for the estimable functions of the parameters in partitioned normal linear model.The superiorities of the EB estimators over ordinary least-squares...In this article,the empirical Bayes(EB)estimators are constructed for the estimable functions of the parameters in partitioned normal linear model.The superiorities of the EB estimators over ordinary least-squares(LS)estimator are investigated under mean square error matrix(MSEM)criterion.展开更多
In this article, the Bayes linear unbiased estimation (BALUE) of parameters is derived for the partitioned linear model. The superiorities of the BALUE over ordinary least square estimator (LSE) are studied in ter...In this article, the Bayes linear unbiased estimation (BALUE) of parameters is derived for the partitioned linear model. The superiorities of the BALUE over ordinary least square estimator (LSE) are studied in terms of the Bayes mean square error matrix (BMSEM) criterion and Pitman closeness (PC) criterion.展开更多
Consider the partitioned linear regression model and its four reduced linear models, where y is an n × 1 observable random vector with E(y) = Xβ and dispersion matrix Var(y) = σ2 V, where σ2 is an unknown pos...Consider the partitioned linear regression model and its four reduced linear models, where y is an n × 1 observable random vector with E(y) = Xβ and dispersion matrix Var(y) = σ2 V, where σ2 is an unknown positive scalar, V is an n × n known symmetric nonnegative definite matrix, X = (X 1 : X 2) is an n×(p+q) known design matrix with rank(X) = r ≤ (p+q), and β = (β′ 1: β′2 )′ with β1 and β2 being p×1 and q×1 vectors of unknown parameters, respectively. In this article the formulae for the differences between the best linear unbiased estimators of M 2 X 1β1under the model and its best linear unbiased estimators under the reduced linear models of are given, where M 2 = I -X 2 X 2 + . Furthermore, the necessary and sufficient conditions for the equalities between the best linear unbiased estimators of M 2 X 1β1 under the model and those under its reduced linear models are established. Lastly, we also study the connections between the model and its linear transformation model.展开更多
基金the Knowledge Innovation Program of the Chinese Academy of Sciences(KJCX3-SYW-S02)the Youth Foundation of USTC
文摘In this article,the empirical Bayes(EB)estimators are constructed for the estimable functions of the parameters in partitioned normal linear model.The superiorities of the EB estimators over ordinary least-squares(LS)estimator are investigated under mean square error matrix(MSEM)criterion.
基金This research is supported by National Natural Science Foundation of China under Grant Nos. 10801123, 10801124 and 10771204, and the Knowledge Innovation Program of the Chinese Academy of Sciences under Grant No. KJCX3-SYW-S02.
文摘In this article, the Bayes linear unbiased estimation (BALUE) of parameters is derived for the partitioned linear model. The superiorities of the BALUE over ordinary least square estimator (LSE) are studied in terms of the Bayes mean square error matrix (BMSEM) criterion and Pitman closeness (PC) criterion.
基金supported by the National Natural Science Foundation of ChinaTian Yuan Special Foundation (No.10226024)Postdoctoral Foundation of China and Lab.of Math.for Nonlinear Sciences at Fudan Universitysupported in part by The International Organizing Committee and The Local Organizing Committee at the University of Tampere for this Workshopsupported in part by an NSF grant of China
文摘Consider the partitioned linear regression model and its four reduced linear models, where y is an n × 1 observable random vector with E(y) = Xβ and dispersion matrix Var(y) = σ2 V, where σ2 is an unknown positive scalar, V is an n × n known symmetric nonnegative definite matrix, X = (X 1 : X 2) is an n×(p+q) known design matrix with rank(X) = r ≤ (p+q), and β = (β′ 1: β′2 )′ with β1 and β2 being p×1 and q×1 vectors of unknown parameters, respectively. In this article the formulae for the differences between the best linear unbiased estimators of M 2 X 1β1under the model and its best linear unbiased estimators under the reduced linear models of are given, where M 2 = I -X 2 X 2 + . Furthermore, the necessary and sufficient conditions for the equalities between the best linear unbiased estimators of M 2 X 1β1 under the model and those under its reduced linear models are established. Lastly, we also study the connections between the model and its linear transformation model.