An approximate analytical model for calculating the pull-in voltage of a stepped cantilever-type radio frequency (RF) micro electro-mechanical system (MEMS) switch is developed based on the Euler-Bernoulli beam an...An approximate analytical model for calculating the pull-in voltage of a stepped cantilever-type radio frequency (RF) micro electro-mechanical system (MEMS) switch is developed based on the Euler-Bernoulli beam and a modified couple stress theory, and is validated by comparison with the finite element results. The sensitivity functions of the pull-in voltage to the designed parameters are derived based on the proposed model. The sensitivity investigation shows that the pull-in voltage sensitivities increase/decrease nonlinearly with the increases in the designed parameters. For the stepped cantilever beam, there exists a nonzero optimal dimensionless length ratio, where the pull-in voltage is insensitive. The optimal value of the dimensionless length ratio only depends on the dimensionless width ratio, and can be obtained by solving a nonlinear equation. The determination of the designed parameters is discussed, and some recommendations are made for the RF MEMS switch optimization.展开更多
Based on the motion differential equations of vibration and acoustic coupling system for thin elastic shells with ribs, by means of the Fourier integral transformation and the Fourier inverse transformation, as well a...Based on the motion differential equations of vibration and acoustic coupling system for thin elastic shells with ribs, by means of the Fourier integral transformation and the Fourier inverse transformation, as well as the stationary phase method, an analytic solution, which has satisfying computational effectiveness and precision, is derived for the solution to the vibration and acoustic radiation from a submerged stiffened infinite circular cylinder with both ring and axial ribs. It is easy to analyze the effect of stiffening supports in the acoustic radiation field by use of the formulas obtained by the presented method and corresponding numerical computation. It is shown that the axial-stiffeners can improve the mechanical and acoustical characteristics. Moreover, the present method can be used to study the acoustic radiation mechanism of the type of structure.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51505089 and61204116)the Opening Project of the Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory(Nos.ZHD201207 and 9140C030605140C03015)the Pearl River S&T Nova Program of Guangzhou(No.2014J2200086)
文摘An approximate analytical model for calculating the pull-in voltage of a stepped cantilever-type radio frequency (RF) micro electro-mechanical system (MEMS) switch is developed based on the Euler-Bernoulli beam and a modified couple stress theory, and is validated by comparison with the finite element results. The sensitivity functions of the pull-in voltage to the designed parameters are derived based on the proposed model. The sensitivity investigation shows that the pull-in voltage sensitivities increase/decrease nonlinearly with the increases in the designed parameters. For the stepped cantilever beam, there exists a nonzero optimal dimensionless length ratio, where the pull-in voltage is insensitive. The optimal value of the dimensionless length ratio only depends on the dimensionless width ratio, and can be obtained by solving a nonlinear equation. The determination of the designed parameters is discussed, and some recommendations are made for the RF MEMS switch optimization.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.10172038)
文摘Based on the motion differential equations of vibration and acoustic coupling system for thin elastic shells with ribs, by means of the Fourier integral transformation and the Fourier inverse transformation, as well as the stationary phase method, an analytic solution, which has satisfying computational effectiveness and precision, is derived for the solution to the vibration and acoustic radiation from a submerged stiffened infinite circular cylinder with both ring and axial ribs. It is easy to analyze the effect of stiffening supports in the acoustic radiation field by use of the formulas obtained by the presented method and corresponding numerical computation. It is shown that the axial-stiffeners can improve the mechanical and acoustical characteristics. Moreover, the present method can be used to study the acoustic radiation mechanism of the type of structure.