The environmental contamination caused by antibiotics is increasingly conspicuous due to their widespread manufacture and misuse. Plasma has been employed in recent years for the remediation of antibiotic pollution in...The environmental contamination caused by antibiotics is increasingly conspicuous due to their widespread manufacture and misuse. Plasma has been employed in recent years for the remediation of antibiotic pollution in the environment. In this work, a falling-film dielectric barrier discharge was used to degrade the antibiotic tetracycline(TC) in water. The reactor combined the gas-liquid discharge and active gas bubbling to improve the TC degradation performance. The discharge characteristics, chemical species’ concentration, and degradation rates at different parameters were systematically studied. Under the optimized conditions(working gas was pure oxygen, liquid flow rate was 100 mL/min, gas flow rate was 1 L/min,voltage was 20 kV, single treatment), TC was removed beyond 70% in a single flow treatment with an energy efficiency of 145 mg/(kW·h). The reactor design facilitated gas and liquid flow in the plasma area to produce more ozone in bubbles after a single flow under pure oxygen conditions, affording fast TC degradation. Furthermore, long-term stationary experiment indicated that long-lived active species can sustain the degradation of TC. Compared with other plasma treatment systems, this work offers a fast and efficient degradation method, showing significant potential in practical industrial applications.展开更多
To improve the utilization rate of plasma active species,in this study,a closed non-uniform air gap is formed by a flowing water film electrode and a sawtooth insulating dielectric layer to realize the diffuse glow di...To improve the utilization rate of plasma active species,in this study,a closed non-uniform air gap is formed by a flowing water film electrode and a sawtooth insulating dielectric layer to realize the diffuse glow discharge in the atmosphere.Firstly,the electric field distribution characteristics of non-uniform air gap in the sawtooth dielectric layer are studied,and the influence of aspect ratio on the characteristics of diffuse discharge plasma is discussed.Subsequently,the effects of wire mesh,the inclination angle of the dielectric plate,and liquid inlet velocity on the flow characteristics of the water film electrode are analyzed.The results show that the non-uniform electric field distribution formed in the sawtooth groove can effectively inhibit the filamentous discharge,and the 1 mm flowing water film is directly used as the electrode,and high-active plasma is formed directly on the lower surface of the water film.In addition,a plasma flowing water treatment device is built to treat the methyl orange solution and observe its decolorization effect.The experimental results show that after 50 min of treatment,the decolorization rate of the methyl orange solution reaches 96%,which provides a new idea for industrial applications of wastewater treatment.展开更多
In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed...In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed only a slight temperature variation, from an influent average of 26.3°C to an effluent of 24.7°C. Electrical conductivity decreased from 1331 mS/cm to 974.5 mS/cm post-primary treatment, with suspended solids (SS) dramatically reduced from 718.9 mg/L to 5.7 mg/L in the final effluent. Biochemical oxygen demand (BOD5) and chemical oxygen demand (COD) saw a notable decrease, from initial levels of 655.6 mg/L and 1240 mg/L to 2.3 mg/L and 71.3 mg/L, respectively. Nitrogenous compounds (N-TN) and phosphates () also decreased significantly, indicating the system’s nutrient removal capacity. Microbiological analysis revealed a reduction in fecal coliforms from 7.5 Ulog/100ml to 1.8 Ulog/100ml and a complete elimination of helminth eggs. The presence of Phragmites and Typha was instrumental in enhancing these reductions. The system’s compliance with the Senegalese standards for disposal into natural environments, WHO recommendations for unrestricted water reuse in irrigation, and the European legislation for water reuse was established. The effluent quality met the stringent criteria for various classes of agricultural reuse, illustrating the system’s potential for sustainable water management. This wetland model presents a robust solution for water-stressed regions, ensuring environmental protection while supporting agricultural needs. The study calls for ongoing research to further refine the system for optimal, reliable wastewater treatment and water resource sustainability.展开更多
With the increase of requirement for ecological function of environment,for quality of water environment,for sewage treatment cost and for comprehensive utilization of water resources,it was bound to introduce a new t...With the increase of requirement for ecological function of environment,for quality of water environment,for sewage treatment cost and for comprehensive utilization of water resources,it was bound to introduce a new type of ecological technology for pollution treatment which was low in cost,convenient in management and stable in operation.High-efficient vertical flow constructed wetland developed by Shenzhen Academy of Environmental Science was characterized by good landscape effect and high efficiency of pollutants removal,and it had been widely applied in sewa-ge treatment and recycling and in lake water circulation purification.A lot of practical results showed that this technology could achieve high removal efficiency of SS,COD,BOD5,NH4-N and TP and the removal rate had arrived at more than 80% when hydraulic loading was 0.33-0.50 m/d.Effluent quality had met the water quality standard for recycling of urban sewage.展开更多
Baosteel' s Slag Short Flow(BSSF) is an innovative process for steelmaking slag treatment that was developed by Baosteel. The process principles, flow-chart, parameters and component systems of the BSSF for steelma...Baosteel' s Slag Short Flow(BSSF) is an innovative process for steelmaking slag treatment that was developed by Baosteel. The process principles, flow-chart, parameters and component systems of the BSSF for steelmaking slag treatment are presented. Characteristics of the finished BSSF slag are summarized by analyzing the slag' s physical and chemical performances. Several Utilization methods for the BSSF slag are given.展开更多
Lab scale biological treatment system was constructed from acrylic and operated using synthetic wastewater to evaluate the nitrification performance using different media. The media used for were Ceramic Ring A (CRA...Lab scale biological treatment system was constructed from acrylic and operated using synthetic wastewater to evaluate the nitrification performance using different media. The media used for were Ceramic Ring A (CRA), Ceramic Ring B (CRB), Japanese Filter Mat (JFM), and Filter Wool (FW). Laboratory studies were conducted, in order to evaluate the nitrification performance of different media types, at different synthetic wastewater flow rates, ranging from 0.03 to 0.045 m3/hr. The results from experiments suggest that at higher water flow rates, there was a decrease in nitrification for all media types. Based on the ammonia and nitrite removal rates, FW media gave the optimum nitrification, of up to 0.46 g/m2/day and 0.09 g/m2/day, respectively. Besides, in this study, the surface texture of the media is the main factor that affected the volumetric ammonia and nitrite conversion rates (VTR and VNR). JFM gave the greatest VTR and VNR performance, compared with the other media展开更多
Using an inviscid model with inlet total pressure gradient and a J. D. Denton scheme, this paper for the first time numerically solves the 3D flow field of compressor casing treatment, and also explores some boundary ...Using an inviscid model with inlet total pressure gradient and a J. D. Denton scheme, this paper for the first time numerically solves the 3D flow field of compressor casing treatment, and also explores some boundary singularities and numerical stability. Agreement is attained in qualitative explanations of some, casing treatment test results and its mechanism.展开更多
This research explores strategies to enhance the efficiency of secondary treatment in Vertical Flow Constructed Wetlands (CW) in Montenegro. The focus is on selecting appropriate primary treatment methods alongside th...This research explores strategies to enhance the efficiency of secondary treatment in Vertical Flow Constructed Wetlands (CW) in Montenegro. The focus is on selecting appropriate primary treatment methods alongside three distinct substrate types to improve wastewater treatment efficacy. The study examines the combination of two primary treatments with different substrate types in constructed wetlands (CW1, CW2, and CW3). The primary treatments include the existing wastewater treatment plant (WWTP) in Podgorica, involving coarse material removal through screens, inert material separation in aerated sand traps, and sediment and suspended matter removal in primary sedimentation tanks. The Extreme Separator (ExSep) was employed to evaluate its efficacy as a primary treatment method. The research demonstrates that the efficiency of CW can be significantly enhanced by selecting suitable primary treatment methods and substrates in Podgorica’s conditions. The most promising results were achieved by combining ExSep as a primary treatment with secondary treatment in CW-3. The removal efficiencies after CW3 for COD, BOD, and TSS exceeded 89%, 93%, and 91%, respectively. The outcomes underscore the significance of primary treatment in mitigating pollutant loads before discharge into the constructed wetlands, emphasizing potential areas for further optimization in wastewater treatment practices to enhance environmental sustainability and water quality management.展开更多
The operational performance of a full scale subsurface flow constructed wetland, which treated the mixed industrial and domestic wastewater with BOD 5/COD mean ratio of 0 33 at Shatian, Shenzhen City was studied. ...The operational performance of a full scale subsurface flow constructed wetland, which treated the mixed industrial and domestic wastewater with BOD 5/COD mean ratio of 0 33 at Shatian, Shenzhen City was studied. The constructed wetland system consists of screens, sump, pumping station, and primary settling basin, facultative pond, first stage wetland and secondary stage wetland. The designed treatment capacity is 5000 m 3/d, and the actual influent flow is in the range of <2000 to >10000 m 3/d. Under normal operational conditions, the final effluent quality well met the National Integrated Wastewater Discharge Standard(GB 8978\_1996), with the following parameters(mean values): COD 33 90 mg/L, BOD 5 7.65 mg/L, TSS 7.92 mg/L, TN 9.11 mg/L and TP 0 56 mg/L. Seven species of plants were selected to grow in the wetland: Reed, Sweetcane flower Silvergrass, Great Bulrush, Powdery Thalia and Canna of three colours. The growing season is a whole year round. The seasonal discrepancy could be observed and the plants growing in the wetland are vulnerable to lower temperature in winter. The recycling of the effluent in the first stage of the wetland system is an effective measure to improve the performance of the wetland system. The insufficient DO value in the wetland system not only had significant effect on pollutants removal in the wetland, but also was unfavourable to plant growth. The recycling of effluent to the inlet of wetland system and artificial pond to increase DO value of influent to the wetland is key to operate the subsurface constructed wetland steadily and effectively.展开更多
Numerical simulations based on a conjugate heat transfer solver have been carried out to analyze various gas quenching configurations involving a helical gear streamed by an air flow at atmospheric pressure in a gas q...Numerical simulations based on a conjugate heat transfer solver have been carried out to analyze various gas quenching configurations involving a helical gear streamed by an air flow at atmospheric pressure in a gas quenching chamber. In order to optimize the heat transfer coefficient distribution at key positions on the specimen, configurations involving layers of gears and flow ducts comprising single to multiple gears have been simulated and compared to standard batch configurations in gas quenching. Measurements have been performed covering the local heat transfer for single gears and batch of gears. The homogeneity of the heat transfer coefficient is improved when setting up a minimal distance between the gears (batch density) and when introducing flow ducts increasing the blocking grade around the gears. An offset between layers of the batch as well as flow channels around the gears plays a significant role in increasing the intensity and the homogeneity of the heat transfer in gas quenching process.展开更多
The circulation period of RH vacuum refining was studied to promote the refining efficiency. The influences of the lift gas flow rate and submersion depth of snorkels on the circulation period, and the relationship be...The circulation period of RH vacuum refining was studied to promote the refining efficiency. The influences of the lift gas flow rate and submersion depth of snorkels on the circulation period, and the relationship between mixing time and circulation flow were dis- cussed. The effects of the lift gas flow rate and submersion depth on the degassing rate in one circulation period were studied by water modeling. The results show that the circulation period is shortened by increasing the lift gas flow rate. The circulation period is the shortest when the submersion depth of snorkels is 560 mm. The whole ladle can be mixed thoroughly after three times of circulation. Increasing the lift gas flow rate can enhance the degassing rate of RH circulation.展开更多
To improve aneurysm treatment,this study examined the influence of clip locations on hemodynamic factors in patient-specific anterior communicating artery(ACoA)aneurysms with different aneurysmal angle.We proposed a s...To improve aneurysm treatment,this study examined the influence of clip locations on hemodynamic factors in patient-specific anterior communicating artery(ACoA)aneurysms with different aneurysmal angle.We proposed a simplified classification of ACoA aneurysms using aneurysmal angle,defined by the angle of pivot of the aneurysmal dome and the virtual two-dimensional plane created by both proximal A2 segments of anterior cerebral artery(ACA).ACoA aneurysms with three different aneurysmal angles,which are 15°,80°and 120°,were analyzed in our study.In this work,we obtained hemodynamics before and after clipping surgery with three clip locations based on clinical clipping strategies in three ACoA aneurysms with different aneurysm angles.Results showed that local high pressure occurs at impingement region of the ACoA aneurysm before clipping and new impingement region close to the clipping location after clipping treatment.For clipping the aneurysm with aneurysmal angle 15°and a wide neck,wall shear stress(WSS)distribution is more uniform when the clipping angle of two clips close to 180°comparing with other two angles.In addition,for clipping the aneurysm with aneurysmal angle 80°and 120°,local high pressure appears on new impingement region and high WSS distributes around the clipping location when the clip plane is normal to the direction of inflow of aneurysm from the dominance of A1 segment of ACA.Hence,we should avoid the impingement of inflow from the A1 segment and choose a favorable clipping location for the fastness of clip.The results of our study could preoperatively give a useful information to the decision of surgical plan.展开更多
Velocity field data were acquired for Taylor-Couette flow in the annulus gap between a rotating inner cylinder and a fixed concentric outer cylinder by particle image velocimetry. The flocculation efficiencies were al...Velocity field data were acquired for Taylor-Couette flow in the annulus gap between a rotating inner cylinder and a fixed concentric outer cylinder by particle image velocimetry. The flocculation efficiencies were also obtained in the same Taylor-Couette flow under the conditions corresponding to the velocity field measurement. It was shown that the flocculation efficiencies reach the maximum values due to the closed vortices in WVF and their contraction and expansion with time, but out of WVF range, the comparatively low flocculation efficiencies were obtained due to the no-closed vortices connected with each other.展开更多
The behavior of flow stress of Al sheets used for pressure can prepared by different melt-treatment during plastic deformation at elevated temperature was studied by isothermal compression test using Gleeble1500 dynam...The behavior of flow stress of Al sheets used for pressure can prepared by different melt-treatment during plastic deformation at elevated temperature was studied by isothermal compression test using Gleeble1500 dynamic hot-simulation testing machine. The results show that the AI sheets possess the remarkable characteristic of steady state flow stress when they are deformed in the temperature range of 350-500℃ at strain rates within the range of 0.01-10.0s^-1. A hyperbolic sine relationship is found to correlate well the flow stress with the strain rate, and an Arrhenius relationship with the temperature, which implies that the process of plastic deformation at elevated temperature for this material is thermally activated. Compared with the AI pieces prepared by no or conventional melt-treatment, hot deformation activation energy of AI sheets prepared by high-efficient melt-treatment is the smallest ( Q= 168.0kJ/mol), which reveals that the hot working formability of this material is very better, and has directly to do with the effective improvement of its metallurgical quality.展开更多
基金supported by the National Science Fund for Distinguished Young Scholars(No.51925703)National Natural Science Foundation of China(Nos.52022096 and 52261145695)。
文摘The environmental contamination caused by antibiotics is increasingly conspicuous due to their widespread manufacture and misuse. Plasma has been employed in recent years for the remediation of antibiotic pollution in the environment. In this work, a falling-film dielectric barrier discharge was used to degrade the antibiotic tetracycline(TC) in water. The reactor combined the gas-liquid discharge and active gas bubbling to improve the TC degradation performance. The discharge characteristics, chemical species’ concentration, and degradation rates at different parameters were systematically studied. Under the optimized conditions(working gas was pure oxygen, liquid flow rate was 100 mL/min, gas flow rate was 1 L/min,voltage was 20 kV, single treatment), TC was removed beyond 70% in a single flow treatment with an energy efficiency of 145 mg/(kW·h). The reactor design facilitated gas and liquid flow in the plasma area to produce more ozone in bubbles after a single flow under pure oxygen conditions, affording fast TC degradation. Furthermore, long-term stationary experiment indicated that long-lived active species can sustain the degradation of TC. Compared with other plasma treatment systems, this work offers a fast and efficient degradation method, showing significant potential in practical industrial applications.
基金financially supported by National Natural Science Foundation of China(No.51577011)。
文摘To improve the utilization rate of plasma active species,in this study,a closed non-uniform air gap is formed by a flowing water film electrode and a sawtooth insulating dielectric layer to realize the diffuse glow discharge in the atmosphere.Firstly,the electric field distribution characteristics of non-uniform air gap in the sawtooth dielectric layer are studied,and the influence of aspect ratio on the characteristics of diffuse discharge plasma is discussed.Subsequently,the effects of wire mesh,the inclination angle of the dielectric plate,and liquid inlet velocity on the flow characteristics of the water film electrode are analyzed.The results show that the non-uniform electric field distribution formed in the sawtooth groove can effectively inhibit the filamentous discharge,and the 1 mm flowing water film is directly used as the electrode,and high-active plasma is formed directly on the lower surface of the water film.In addition,a plasma flowing water treatment device is built to treat the methyl orange solution and observe its decolorization effect.The experimental results show that after 50 min of treatment,the decolorization rate of the methyl orange solution reaches 96%,which provides a new idea for industrial applications of wastewater treatment.
文摘In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed only a slight temperature variation, from an influent average of 26.3°C to an effluent of 24.7°C. Electrical conductivity decreased from 1331 mS/cm to 974.5 mS/cm post-primary treatment, with suspended solids (SS) dramatically reduced from 718.9 mg/L to 5.7 mg/L in the final effluent. Biochemical oxygen demand (BOD5) and chemical oxygen demand (COD) saw a notable decrease, from initial levels of 655.6 mg/L and 1240 mg/L to 2.3 mg/L and 71.3 mg/L, respectively. Nitrogenous compounds (N-TN) and phosphates () also decreased significantly, indicating the system’s nutrient removal capacity. Microbiological analysis revealed a reduction in fecal coliforms from 7.5 Ulog/100ml to 1.8 Ulog/100ml and a complete elimination of helminth eggs. The presence of Phragmites and Typha was instrumental in enhancing these reductions. The system’s compliance with the Senegalese standards for disposal into natural environments, WHO recommendations for unrestricted water reuse in irrigation, and the European legislation for water reuse was established. The effluent quality met the stringent criteria for various classes of agricultural reuse, illustrating the system’s potential for sustainable water management. This wetland model presents a robust solution for water-stressed regions, ensuring environmental protection while supporting agricultural needs. The study calls for ongoing research to further refine the system for optimal, reliable wastewater treatment and water resource sustainability.
文摘With the increase of requirement for ecological function of environment,for quality of water environment,for sewage treatment cost and for comprehensive utilization of water resources,it was bound to introduce a new type of ecological technology for pollution treatment which was low in cost,convenient in management and stable in operation.High-efficient vertical flow constructed wetland developed by Shenzhen Academy of Environmental Science was characterized by good landscape effect and high efficiency of pollutants removal,and it had been widely applied in sewa-ge treatment and recycling and in lake water circulation purification.A lot of practical results showed that this technology could achieve high removal efficiency of SS,COD,BOD5,NH4-N and TP and the removal rate had arrived at more than 80% when hydraulic loading was 0.33-0.50 m/d.Effluent quality had met the water quality standard for recycling of urban sewage.
文摘Baosteel' s Slag Short Flow(BSSF) is an innovative process for steelmaking slag treatment that was developed by Baosteel. The process principles, flow-chart, parameters and component systems of the BSSF for steelmaking slag treatment are presented. Characteristics of the finished BSSF slag are summarized by analyzing the slag' s physical and chemical performances. Several Utilization methods for the BSSF slag are given.
文摘Lab scale biological treatment system was constructed from acrylic and operated using synthetic wastewater to evaluate the nitrification performance using different media. The media used for were Ceramic Ring A (CRA), Ceramic Ring B (CRB), Japanese Filter Mat (JFM), and Filter Wool (FW). Laboratory studies were conducted, in order to evaluate the nitrification performance of different media types, at different synthetic wastewater flow rates, ranging from 0.03 to 0.045 m3/hr. The results from experiments suggest that at higher water flow rates, there was a decrease in nitrification for all media types. Based on the ammonia and nitrite removal rates, FW media gave the optimum nitrification, of up to 0.46 g/m2/day and 0.09 g/m2/day, respectively. Besides, in this study, the surface texture of the media is the main factor that affected the volumetric ammonia and nitrite conversion rates (VTR and VNR). JFM gave the greatest VTR and VNR performance, compared with the other media
文摘Using an inviscid model with inlet total pressure gradient and a J. D. Denton scheme, this paper for the first time numerically solves the 3D flow field of compressor casing treatment, and also explores some boundary singularities and numerical stability. Agreement is attained in qualitative explanations of some, casing treatment test results and its mechanism.
文摘This research explores strategies to enhance the efficiency of secondary treatment in Vertical Flow Constructed Wetlands (CW) in Montenegro. The focus is on selecting appropriate primary treatment methods alongside three distinct substrate types to improve wastewater treatment efficacy. The study examines the combination of two primary treatments with different substrate types in constructed wetlands (CW1, CW2, and CW3). The primary treatments include the existing wastewater treatment plant (WWTP) in Podgorica, involving coarse material removal through screens, inert material separation in aerated sand traps, and sediment and suspended matter removal in primary sedimentation tanks. The Extreme Separator (ExSep) was employed to evaluate its efficacy as a primary treatment method. The research demonstrates that the efficiency of CW can be significantly enhanced by selecting suitable primary treatment methods and substrates in Podgorica’s conditions. The most promising results were achieved by combining ExSep as a primary treatment with secondary treatment in CW-3. The removal efficiencies after CW3 for COD, BOD, and TSS exceeded 89%, 93%, and 91%, respectively. The outcomes underscore the significance of primary treatment in mitigating pollutant loads before discharge into the constructed wetlands, emphasizing potential areas for further optimization in wastewater treatment practices to enhance environmental sustainability and water quality management.
文摘The operational performance of a full scale subsurface flow constructed wetland, which treated the mixed industrial and domestic wastewater with BOD 5/COD mean ratio of 0 33 at Shatian, Shenzhen City was studied. The constructed wetland system consists of screens, sump, pumping station, and primary settling basin, facultative pond, first stage wetland and secondary stage wetland. The designed treatment capacity is 5000 m 3/d, and the actual influent flow is in the range of <2000 to >10000 m 3/d. Under normal operational conditions, the final effluent quality well met the National Integrated Wastewater Discharge Standard(GB 8978\_1996), with the following parameters(mean values): COD 33 90 mg/L, BOD 5 7.65 mg/L, TSS 7.92 mg/L, TN 9.11 mg/L and TP 0 56 mg/L. Seven species of plants were selected to grow in the wetland: Reed, Sweetcane flower Silvergrass, Great Bulrush, Powdery Thalia and Canna of three colours. The growing season is a whole year round. The seasonal discrepancy could be observed and the plants growing in the wetland are vulnerable to lower temperature in winter. The recycling of the effluent in the first stage of the wetland system is an effective measure to improve the performance of the wetland system. The insufficient DO value in the wetland system not only had significant effect on pollutants removal in the wetland, but also was unfavourable to plant growth. The recycling of effluent to the inlet of wetland system and artificial pond to increase DO value of influent to the wetland is key to operate the subsurface constructed wetland steadily and effectively.
文摘Numerical simulations based on a conjugate heat transfer solver have been carried out to analyze various gas quenching configurations involving a helical gear streamed by an air flow at atmospheric pressure in a gas quenching chamber. In order to optimize the heat transfer coefficient distribution at key positions on the specimen, configurations involving layers of gears and flow ducts comprising single to multiple gears have been simulated and compared to standard batch configurations in gas quenching. Measurements have been performed covering the local heat transfer for single gears and batch of gears. The homogeneity of the heat transfer coefficient is improved when setting up a minimal distance between the gears (batch density) and when introducing flow ducts increasing the blocking grade around the gears. An offset between layers of the batch as well as flow channels around the gears plays a significant role in increasing the intensity and the homogeneity of the heat transfer in gas quenching process.
基金supported by the National Key Technology R & D Program of China (No.2006BAE03A06)
文摘The circulation period of RH vacuum refining was studied to promote the refining efficiency. The influences of the lift gas flow rate and submersion depth of snorkels on the circulation period, and the relationship between mixing time and circulation flow were dis- cussed. The effects of the lift gas flow rate and submersion depth on the degassing rate in one circulation period were studied by water modeling. The results show that the circulation period is shortened by increasing the lift gas flow rate. The circulation period is the shortest when the submersion depth of snorkels is 560 mm. The whole ladle can be mixed thoroughly after three times of circulation. Increasing the lift gas flow rate can enhance the degassing rate of RH circulation.
基金This work was kindly supported by National Natural Science Foundation of China(11602053,51576033)Education Department of Liaoning Province general project(L2015113).
文摘To improve aneurysm treatment,this study examined the influence of clip locations on hemodynamic factors in patient-specific anterior communicating artery(ACoA)aneurysms with different aneurysmal angle.We proposed a simplified classification of ACoA aneurysms using aneurysmal angle,defined by the angle of pivot of the aneurysmal dome and the virtual two-dimensional plane created by both proximal A2 segments of anterior cerebral artery(ACA).ACoA aneurysms with three different aneurysmal angles,which are 15°,80°and 120°,were analyzed in our study.In this work,we obtained hemodynamics before and after clipping surgery with three clip locations based on clinical clipping strategies in three ACoA aneurysms with different aneurysm angles.Results showed that local high pressure occurs at impingement region of the ACoA aneurysm before clipping and new impingement region close to the clipping location after clipping treatment.For clipping the aneurysm with aneurysmal angle 15°and a wide neck,wall shear stress(WSS)distribution is more uniform when the clipping angle of two clips close to 180°comparing with other two angles.In addition,for clipping the aneurysm with aneurysmal angle 80°and 120°,local high pressure appears on new impingement region and high WSS distributes around the clipping location when the clip plane is normal to the direction of inflow of aneurysm from the dominance of A1 segment of ACA.Hence,we should avoid the impingement of inflow from the A1 segment and choose a favorable clipping location for the fastness of clip.The results of our study could preoperatively give a useful information to the decision of surgical plan.
文摘Velocity field data were acquired for Taylor-Couette flow in the annulus gap between a rotating inner cylinder and a fixed concentric outer cylinder by particle image velocimetry. The flocculation efficiencies were also obtained in the same Taylor-Couette flow under the conditions corresponding to the velocity field measurement. It was shown that the flocculation efficiencies reach the maximum values due to the closed vortices in WVF and their contraction and expansion with time, but out of WVF range, the comparatively low flocculation efficiencies were obtained due to the no-closed vortices connected with each other.
基金supported by the Fujian Provincial Natural Science Foundation(No.E0210011)the Educational Commission of Fujian province(No.K20014).
文摘The behavior of flow stress of Al sheets used for pressure can prepared by different melt-treatment during plastic deformation at elevated temperature was studied by isothermal compression test using Gleeble1500 dynamic hot-simulation testing machine. The results show that the AI sheets possess the remarkable characteristic of steady state flow stress when they are deformed in the temperature range of 350-500℃ at strain rates within the range of 0.01-10.0s^-1. A hyperbolic sine relationship is found to correlate well the flow stress with the strain rate, and an Arrhenius relationship with the temperature, which implies that the process of plastic deformation at elevated temperature for this material is thermally activated. Compared with the AI pieces prepared by no or conventional melt-treatment, hot deformation activation energy of AI sheets prepared by high-efficient melt-treatment is the smallest ( Q= 168.0kJ/mol), which reveals that the hot working formability of this material is very better, and has directly to do with the effective improvement of its metallurgical quality.