A simulation model was proposed to investigate the relationship between train delays and passenger delays and to predict the dynamic passenger distribution in a large-scale rail transit network. It was assumed that th...A simulation model was proposed to investigate the relationship between train delays and passenger delays and to predict the dynamic passenger distribution in a large-scale rail transit network. It was assumed that the time varying original-destination demand and passenger path choice probability were given. Passengers were assumed not to change their destinations and travel paths after delay occurs. CapaciW constraints of train and queue rules of alighting and boarding were taken into account. By using the time-driven simulation, the states of passengers, trains and other facilities in the network were updated every time step. The proposed methodology was also tested in a real network, for demonstration. The results reveal that short train delay does not necessarily result in passenger delays, while, on the contrary, some passengers may get benefits from the short delay. However, large initial train delay may result in not only knock-on train and passenger delays along the same line, but also the passenger delays across the entire rail transit network.展开更多
Tram systems with the advantages of reliable operation,comfort,low emissions and moderate capacity have been quite popular in recent years in China.However,there are still problems with tram signal control(e.g.evaluat...Tram systems with the advantages of reliable operation,comfort,low emissions and moderate capacity have been quite popular in recent years in China.However,there are still problems with tram signal control(e.g.evaluation model,signal control strategies).In-depth analysis on existing operational issues of trams,calculation of two evaluation indexes,as well as a flexible model-free tram signal priority method were developed to deal with tram problems.Empirical research in Songjiang District,Shanghai shows that:(1)The function of the green extension strategy is limited with c.a.10%tram priority improvement,while the optimal one can reach to 85%higher on average.(2)A scheme with a benefit for trams and with no negative impact,and even benefits,for general traffic can be realized.(3)The optimal solution is beneficial for intersections with a maximum c.a.70%amelioration with delay decreasing from 132.7 s/vehicle to 40.89 s/vehicle,or from 104.77 s/capita to 22.31 s/capita.This paper has great significance for the signal optimization and safety of tram systems,even the development of a comprehensive transportation system for a city.展开更多
基金Project(51008229)supported by the National Natural Science Foundation of ChinaProject supported by Key Laboratory of Road and Traffic Engineering of Tongji University,China
文摘A simulation model was proposed to investigate the relationship between train delays and passenger delays and to predict the dynamic passenger distribution in a large-scale rail transit network. It was assumed that the time varying original-destination demand and passenger path choice probability were given. Passengers were assumed not to change their destinations and travel paths after delay occurs. CapaciW constraints of train and queue rules of alighting and boarding were taken into account. By using the time-driven simulation, the states of passengers, trains and other facilities in the network were updated every time step. The proposed methodology was also tested in a real network, for demonstration. The results reveal that short train delay does not necessarily result in passenger delays, while, on the contrary, some passengers may get benefits from the short delay. However, large initial train delay may result in not only knock-on train and passenger delays along the same line, but also the passenger delays across the entire rail transit network.
基金supported by the National Nature Science Foundation of China(Grant No.51178343)。
文摘Tram systems with the advantages of reliable operation,comfort,low emissions and moderate capacity have been quite popular in recent years in China.However,there are still problems with tram signal control(e.g.evaluation model,signal control strategies).In-depth analysis on existing operational issues of trams,calculation of two evaluation indexes,as well as a flexible model-free tram signal priority method were developed to deal with tram problems.Empirical research in Songjiang District,Shanghai shows that:(1)The function of the green extension strategy is limited with c.a.10%tram priority improvement,while the optimal one can reach to 85%higher on average.(2)A scheme with a benefit for trams and with no negative impact,and even benefits,for general traffic can be realized.(3)The optimal solution is beneficial for intersections with a maximum c.a.70%amelioration with delay decreasing from 132.7 s/vehicle to 40.89 s/vehicle,or from 104.77 s/capita to 22.31 s/capita.This paper has great significance for the signal optimization and safety of tram systems,even the development of a comprehensive transportation system for a city.