Mono-crystalline silicon solar cells with a passivated emitter rear contact(PERC)configuration have attracted extensive attention from both industry and scientific communities.A record efficiency of 24.06%on p-type si...Mono-crystalline silicon solar cells with a passivated emitter rear contact(PERC)configuration have attracted extensive attention from both industry and scientific communities.A record efficiency of 24.06%on p-type silicon wafer and mass production efficiency around 22%have been demonstrated,mainly due to its superior rear side passivation.In this work,the PERC solar cells with a p-type silicon wafer were numerically studied in terms of the surface passivation,quality of silicon wafer and metal electrodes.A rational way to achieve a 24%mass-production efficiency was proposed.Free energy loss analyses were adopted to address the loss sources with respect to the limit efficiency of 29%,which provides a guideline for the design and manufacture of a high-efficiency PERC solar cell.展开更多
Polycrystalline Si(poly-Si)-based passivating contacts are promising candidates for high-efficiency crystalline Si solar cells.We show that nanosecond-scale pulsed laser melting(PLM)is an industrially viable technique...Polycrystalline Si(poly-Si)-based passivating contacts are promising candidates for high-efficiency crystalline Si solar cells.We show that nanosecond-scale pulsed laser melting(PLM)is an industrially viable technique to fabricate such contacts with precisely controlled dopant concentration profiles that exceed the solid solubility limit.We demonstrate that conventionally doped,hole-selective poly-Si/SiO_(x)contacts that provide poor surface passivation of c-Si can be replaced with Ga-or B-doped contacts based on non-equilibrium doping.We overcome the solid solubility limit for both dopants in poly-Si by rapid cooling and recrystallization over a timescale of∼25 ns.We show an active Ga dopant concentration of∼3×10^(20)cm^(−3)in poly-Si which is six times higher than its solubility limit in c-Si,and a B dopant concentration as high as∼10^(21) cm^(−3).We measure an implied open-circuit voltage of 735 mV for Ga-doped poly-Si/SiO_(x)contacts on Czochralski Si with a low contact resistivity of 35.5±2.4 mΩcm^(2).Scanning spreading resistance microscopy and Kelvin probe force microscopy show large diffusion and drift current in the p-n junction that contributes to the low contact resistivity.Our results suggest that PLM can be extended for hyperdoping of other semiconductors with low solubility atoms to enable high-efficiency devices.展开更多
Tandem solar cells are a key technology for exceeding the theoretical efficiency limit of single-junction cells.One of the most promising combinations is the silicon–perovskite tandem cells,considering their potentia...Tandem solar cells are a key technology for exceeding the theoretical efficiency limit of single-junction cells.One of the most promising combinations is the silicon–perovskite tandem cells,considering their potential for high efficiency,fabrication on a large scale,and low cost.While most research focuses on improving each subcell,another key challenge lies in the tunnel junction that connects these subcells,significantly impacting the overall cell characteristics.Here,we demonstrate the first use of tunnel junctions using a stack of p+/n+polysilicon passivating contacts deposited directly on the tunnel oxide to overcome the drawbacks of conventional metal oxide-based tunnel junctions,including low tunneling efficiency and sputter damage.Using Random Forest analysis,we achieved high implied open circuit voltages over 700 mV and low contact resistivities of 500 mΩcm 2,suggesting fill factor losses of less than 1%abs for the operating conditions of a tandem cell.展开更多
基金supported by the National Natural Science Foundation of China(No.61504155)。
文摘Mono-crystalline silicon solar cells with a passivated emitter rear contact(PERC)configuration have attracted extensive attention from both industry and scientific communities.A record efficiency of 24.06%on p-type silicon wafer and mass production efficiency around 22%have been demonstrated,mainly due to its superior rear side passivation.In this work,the PERC solar cells with a p-type silicon wafer were numerically studied in terms of the surface passivation,quality of silicon wafer and metal electrodes.A rational way to achieve a 24%mass-production efficiency was proposed.Free energy loss analyses were adopted to address the loss sources with respect to the limit efficiency of 29%,which provides a guideline for the design and manufacture of a high-efficiency PERC solar cell.
基金the National Renewable Energy Laboratory,operated by Alliance for Sustainable Energy,LLC,for the U.S.Department of Energy(DOE)under Contract No.DE-AC36-08GO28308.
文摘Polycrystalline Si(poly-Si)-based passivating contacts are promising candidates for high-efficiency crystalline Si solar cells.We show that nanosecond-scale pulsed laser melting(PLM)is an industrially viable technique to fabricate such contacts with precisely controlled dopant concentration profiles that exceed the solid solubility limit.We demonstrate that conventionally doped,hole-selective poly-Si/SiO_(x)contacts that provide poor surface passivation of c-Si can be replaced with Ga-or B-doped contacts based on non-equilibrium doping.We overcome the solid solubility limit for both dopants in poly-Si by rapid cooling and recrystallization over a timescale of∼25 ns.We show an active Ga dopant concentration of∼3×10^(20)cm^(−3)in poly-Si which is six times higher than its solubility limit in c-Si,and a B dopant concentration as high as∼10^(21) cm^(−3).We measure an implied open-circuit voltage of 735 mV for Ga-doped poly-Si/SiO_(x)contacts on Czochralski Si with a low contact resistivity of 35.5±2.4 mΩcm^(2).Scanning spreading resistance microscopy and Kelvin probe force microscopy show large diffusion and drift current in the p-n junction that contributes to the low contact resistivity.Our results suggest that PLM can be extended for hyperdoping of other semiconductors with low solubility atoms to enable high-efficiency devices.
基金This research was funded by the New&Renewable Energy Core Technology Program of the Korea Institute of Energy Technology Eval-uation and Planning(KETEP),and supported by the ministry of Trade,Industry,Energy,of the Republic of Korea(No.20204010600470)Munho Kim acknowledges the support of Ministry of Education,Sin-gapore,under AcRF Tier 2(T2EP50120-0001)。
文摘Tandem solar cells are a key technology for exceeding the theoretical efficiency limit of single-junction cells.One of the most promising combinations is the silicon–perovskite tandem cells,considering their potential for high efficiency,fabrication on a large scale,and low cost.While most research focuses on improving each subcell,another key challenge lies in the tunnel junction that connects these subcells,significantly impacting the overall cell characteristics.Here,we demonstrate the first use of tunnel junctions using a stack of p+/n+polysilicon passivating contacts deposited directly on the tunnel oxide to overcome the drawbacks of conventional metal oxide-based tunnel junctions,including low tunneling efficiency and sputter damage.Using Random Forest analysis,we achieved high implied open circuit voltages over 700 mV and low contact resistivities of 500 mΩcm 2,suggesting fill factor losses of less than 1%abs for the operating conditions of a tandem cell.