期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Conceptual Strategy for Mitigating the Risk of Hydrogen as an Internal Hazard in Case of Severe Accidents at Nuclear Power Plant Considering Existing Risks and Uncertainties Associated with the Use of Traditional Strategies
1
作者 Arman Grigoryan 《World Journal of Nuclear Science and Technology》 CAS 2024年第3期165-177,共13页
Hydrogen challenge mitigation stands as one of the main objectives in the management of severe accidents at Nuclear Power Plants (NPPs). Key strategies for hydrogen control include atmospheric inertization and hydroge... Hydrogen challenge mitigation stands as one of the main objectives in the management of severe accidents at Nuclear Power Plants (NPPs). Key strategies for hydrogen control include atmospheric inertization and hydrogen removal with Passive Autocatalytic Recombiners (PARs) being a commonly accepted approach. However, an examination of PAR operation specificity reveals potential inefficiencies and reliability issues in certain severe accident scenarios. Moreover, during the in-vessel stage of severe accident development, in some severe accident scenarios PARs can unexpectedly become a source of hydrogen detonation. The effectiveness of hydrogen removal systems depends on various factors, including the chosen strategies, severe accident scenarios, reactor building design, and other influencing factors. Consequently, a comprehensive hydrogen mitigation strategy must effectively incorporate a combination of strategies rather than be based on one strategy, taking into consideration the probabilistic risks and uncertainties associated with the implementation of PARs or other traditional methods. In response to these considerations, within the framework of this research it has been suggested a conceptual strategy to mitigate the hydrogen challenge during the in-vessel stage of severe accident development. 展开更多
关键词 Severe Accident Management Nuclear Power Plant Hydrogen Risk Mitigation Risk Management passive autocatalytic Recombiner
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部