Reference-frame-independent(RFI)quantum key distribution(QKD)is a protocol which can share unconditional secret keys between two remote users without the alignment of slowly varying reference frames.We propose a p...Reference-frame-independent(RFI)quantum key distribution(QKD)is a protocol which can share unconditional secret keys between two remote users without the alignment of slowly varying reference frames.We propose a passive decoy-state RFI-QKD protocol with heralded single-photon source(HSPS)and present its security analysis.Compared with RFI QKD using a weak coherent pulse source(WCPS),numerical simulations show that the passive decoy-state RFI QKD with HSPS performs better not only in secret key rate but also in secure transmission distance.Moreover,our protocol is robust against the relative motion of the reference frames as well as RFI QKD with the WCPS.In addition,we also exploit Hoeffding's inequality to investigate the finite-key effect on the security of the protocol.展开更多
Single passive sensor tracking algorithms have four disadvantages: bad stability, longdynamic time, big bias and sensitive to initial conditions. So the corresponding fusion algorithm results in bad performance. A new...Single passive sensor tracking algorithms have four disadvantages: bad stability, longdynamic time, big bias and sensitive to initial conditions. So the corresponding fusion algorithm results in bad performance. A new error analysis method for two passive sensor tracking system is presented and the error equations are deduced in detail. Based on the equations, we carry out theoretical computation and Monte Carlo computer simulation. The results show the correctness of our error computation equations. With the error equations, we present multiple 'two station'fusion algorithm using adaptive pseudo measurement equations. This greatly enhances the tracking performance and makes the algorithm convergent very fast and not sensitive to initial conditions.Simulation results prove the correctness of our new algorithm.展开更多
To promote the modeling standardization process of the integrated circuits, an improved electrical simulation model for a direct power injection (DPI) setup which was used to measure the conducted immunity of a 16-b...To promote the modeling standardization process of the integrated circuits, an improved electrical simulation model for a direct power injection (DPI) setup which was used to measure the conducted immunity of a 16-bit microcontroller to radio frequency aggression was investigated. Based on the existing model of the same microcontroller, the PDN module was modified by adding the core, PLL and MD network models, which could reflect the actual electric distribution situation within the microcontroller more accurately. By comparing the simulation results with the measurement results, the effectiveness of the modified model can be improved to 500 MHz, and its uncertainty is within +1.8 dB (+2 dB is acceptable). Then, to improve the simulation accuracy of the complete model in the high frequency range, the I/O model which contained the dynamic and nonlinear characteristics reflecting the variation of the internal impedance of the microcontroller with increasing the frequency of the external noise was introduced. By comparing the simulation results with the measurement results, the effectiveness of the second modified model can be improved up to 1.4 GHz with the uncertainty of ~1.8 dB. Thus, a conclusion can be reached that the proposed model can be applied to a much wider frequency range with a smaller uncertainty than the latest model of the similar type. Furthermore, associated with the electromagnetic emission testing platform model, the PDN module can also be used to predict the electromagnetic conducted and radiated emission characteristics. This modeling method can also be applied to other integrated circuits, which is very helpful to the standardization of the IC electromagnetic compatibility (EMC) modeling process.展开更多
A broadband distributed passive gate-pumped mixer(DPGM) using standard 0.18μm CMOS technology is presented.By employing distributed topology,the mixer can operate at a wide frequency range.In addition,a fourth-orde...A broadband distributed passive gate-pumped mixer(DPGM) using standard 0.18μm CMOS technology is presented.By employing distributed topology,the mixer can operate at a wide frequency range.In addition,a fourth-order low pass filter is applied to improve the port-to-port isolation.This paper also analyzes the impedance match and conversion loss of the mixer,which consumes zero dc power and exhibits a measured conversion loss of 9.4—17 dB from 3 to 40 GHz with a compact size of 0.78 mm^2.The input referred 1 dB compression point is higher than 4 dBm at a fixed IF frequency of 500 MHz and RF frequency of 23 GHz,and the measured RF-to-LO, RF-to-IF and LO-to-IF isolations are better than 21,38 and 45 dB,respectively.The mixer is suitable for WLAN, UWB,Wi-Max,automotive radar systems and other millimeter-wave radio applications.展开更多
基金Supported by the National Basic Research Program of China under Grant No 2013CB338002the National Natural Science Foundation of China under Grant Nos 61505261,61675235,61605248 and 11304397
文摘Reference-frame-independent(RFI)quantum key distribution(QKD)is a protocol which can share unconditional secret keys between two remote users without the alignment of slowly varying reference frames.We propose a passive decoy-state RFI-QKD protocol with heralded single-photon source(HSPS)and present its security analysis.Compared with RFI QKD using a weak coherent pulse source(WCPS),numerical simulations show that the passive decoy-state RFI QKD with HSPS performs better not only in secret key rate but also in secure transmission distance.Moreover,our protocol is robust against the relative motion of the reference frames as well as RFI QKD with the WCPS.In addition,we also exploit Hoeffding's inequality to investigate the finite-key effect on the security of the protocol.
文摘Single passive sensor tracking algorithms have four disadvantages: bad stability, longdynamic time, big bias and sensitive to initial conditions. So the corresponding fusion algorithm results in bad performance. A new error analysis method for two passive sensor tracking system is presented and the error equations are deduced in detail. Based on the equations, we carry out theoretical computation and Monte Carlo computer simulation. The results show the correctness of our error computation equations. With the error equations, we present multiple 'two station'fusion algorithm using adaptive pseudo measurement equations. This greatly enhances the tracking performance and makes the algorithm convergent very fast and not sensitive to initial conditions.Simulation results prove the correctness of our new algorithm.
基金Project(2007dfa71250) supported by the International Science and Technology Cooperative Program of ChinaProject(20062250) supported by the Doctor Fund of North China Electric Power University, China
文摘To promote the modeling standardization process of the integrated circuits, an improved electrical simulation model for a direct power injection (DPI) setup which was used to measure the conducted immunity of a 16-bit microcontroller to radio frequency aggression was investigated. Based on the existing model of the same microcontroller, the PDN module was modified by adding the core, PLL and MD network models, which could reflect the actual electric distribution situation within the microcontroller more accurately. By comparing the simulation results with the measurement results, the effectiveness of the modified model can be improved to 500 MHz, and its uncertainty is within +1.8 dB (+2 dB is acceptable). Then, to improve the simulation accuracy of the complete model in the high frequency range, the I/O model which contained the dynamic and nonlinear characteristics reflecting the variation of the internal impedance of the microcontroller with increasing the frequency of the external noise was introduced. By comparing the simulation results with the measurement results, the effectiveness of the second modified model can be improved up to 1.4 GHz with the uncertainty of ~1.8 dB. Thus, a conclusion can be reached that the proposed model can be applied to a much wider frequency range with a smaller uncertainty than the latest model of the similar type. Furthermore, associated with the electromagnetic emission testing platform model, the PDN module can also be used to predict the electromagnetic conducted and radiated emission characteristics. This modeling method can also be applied to other integrated circuits, which is very helpful to the standardization of the IC electromagnetic compatibility (EMC) modeling process.
基金supported by the State Key Development Program for Basic Research of China(No.2010CB327404)
文摘A broadband distributed passive gate-pumped mixer(DPGM) using standard 0.18μm CMOS technology is presented.By employing distributed topology,the mixer can operate at a wide frequency range.In addition,a fourth-order low pass filter is applied to improve the port-to-port isolation.This paper also analyzes the impedance match and conversion loss of the mixer,which consumes zero dc power and exhibits a measured conversion loss of 9.4—17 dB from 3 to 40 GHz with a compact size of 0.78 mm^2.The input referred 1 dB compression point is higher than 4 dBm at a fixed IF frequency of 500 MHz and RF frequency of 23 GHz,and the measured RF-to-LO, RF-to-IF and LO-to-IF isolations are better than 21,38 and 45 dB,respectively.The mixer is suitable for WLAN, UWB,Wi-Max,automotive radar systems and other millimeter-wave radio applications.