The vibration of three-dimensional frame structures was studied as receptance motion. A receptance model was constructed for passive vibration reduction. First, the universal receptance computational method suitable t...The vibration of three-dimensional frame structures was studied as receptance motion. A receptance model was constructed for passive vibration reduction. First, the universal receptance computational method suitable to any combination of boundary conditions was given, and then the way of passive damping-damping elements was analyzed, and an iterative approach to select optimal damping positions, whose dissipated paver is larger than the others, was proposed bared on the results of receptance analysis. The results show that, the receptance model is very suitable for local modification and analysis of structures.展开更多
Kagome based high authority shape morphing structure is a kind of truss-cored sandwich metal plate with a planar Kagome truss as one of its face plane. The planar Kagome truss can achieve arbitrary in-plane nodal disp...Kagome based high authority shape morphing structure is a kind of truss-cored sandwich metal plate with a planar Kagome truss as one of its face plane. The planar Kagome truss can achieve arbitrary in-plane nodal displacements with minimal internal resistance when its rods are deformed. Moreover, the in-plane deflection of the planar Kagome truss may induce the lateral deflection of the whole sandwich plate. In this paper, the feasibility to enhance the damping of the truss-cored sandwich plate through the replacement of a very small portion of rods in the planar Kagome truss by cylindrical viscoelastic dampers is exploited. The Biot model is chosen to simulate the behavior of the viscoelastic material in the dampers, and the fraction of axial modal strain energy of the rods in the planar Kagome truss is adopted as the index to decide the positions of the dampers. Through complex modal analysis and time-domain simulation, it is shown that the passive vibration control approach is very effective for the vibration reduction of this kind of truss-cored sandwich plates.展开更多
The performance of an optical system with sensitive line-of-sight(LOS)is influenced by rotational vibration.In view of this,a design methodology is proposed for a passive vibration isolation system in an optical syste...The performance of an optical system with sensitive line-of-sight(LOS)is influenced by rotational vibration.In view of this,a design methodology is proposed for a passive vibration isolation system in an optical system with sensitive LOS.Rotational vibration is attributed to two sources:transmitted from the mounting base and generated by modal coupling.Therefore,the elimination of the rotational vibration caused by coupling becomes an important part of the design of the isolation system.Additionally,the decoupling conditions of the system can be obtained.When the system is totally decoupled,the vibration on each degree of freedom(DOF)can be analyzed independently.Therefore,the stiffness and damping coefficient on each DOF could be obtained by limiting the vibration transmissibility,in accordance to actual requirements.The design of a vibration isolation system must be restricted by the size and shape of the payload and the installation space,and the layout constrains are thus also discussed.展开更多
In this paper,a hybrid passive/active vibration(HPAV)controller of a loosely connected spacecraft consisting of a servicing satellite,a target and an X-shape structure isolator is first proposed to suppress vibrations...In this paper,a hybrid passive/active vibration(HPAV)controller of a loosely connected spacecraft consisting of a servicing satellite,a target and an X-shape structure isolator is first proposed to suppress vibrations of the system when subjected to the impulsive external excitations during the on-orbit missions.The passive dynamic response of the combined system can be adjusted appropriately to achieve the desired vibration isolation performance by tuning the structural parameters of the bio-inspired X-shape structure.Moreover,the adaptive control design through dynamic scaling technique is selected as the active component to maintain high vibration isolation performance in the presence of parameter uncertainties such as mass of the satellite platform,the damping and rotation friction coefficients of the X-shape structure.Compared with the pure passive system and the traditional spring-mass-damper(SMD)isolator,the HPAV strategy witnesses lower transmissibility,smaller vibration amplitude and higher convergence rate when subjected to the post-capture impact.Numerical simulations demonstrate the feasibility and validity of the proposed hybrid control scheme in suppressing vibrations of the free-floating spacecraft.展开更多
By analyzing the correlation between modal calculations and modal experiments of a typical supporter, an effective finite element analysis( FEA)model of the actual aerospace supporter is created. According to the anal...By analyzing the correlation between modal calculations and modal experiments of a typical supporter, an effective finite element analysis( FEA)model of the actual aerospace supporter is created. According to the analysis of constrained viscoelastic damping, the strategies of PVC have been worked out, and the correlation between modal calculations and modal experiments of the supporter has also been computed, and then, an experiment has been designed based on the calculation results. The results of experiments verify that the PVC strategy can effectively suppress vibration.展开更多
The first International Symposium on Dynamics,Monitoring,and Diagnostics was held in Chongqing,China,in April 2022.The Symposium,which was attended both virtually and in person,had an audience of 2000 and was aimed at...The first International Symposium on Dynamics,Monitoring,and Diagnostics was held in Chongqing,China,in April 2022.The Symposium,which was attended both virtually and in person,had an audience of 2000 and was aimed at enhancing the intelligence of condition monitoring for engineering systems.During the Symposium,five keynote addresses were delivered by world leading experts,and this paper is comprised of summaries of these addresses to ensure that the important messages of these speakers are properly on record and readily able to be referenced.展开更多
Inspired by the safe landing of a cat falling from a high altitude,a bio-inspired polygonal skeleton(BIPS) structure is proposed,and its nonlinear characteristics are systematically studied to explore its potential ap...Inspired by the safe landing of a cat falling from a high altitude,a bio-inspired polygonal skeleton(BIPS) structure is proposed,and its nonlinear characteristics are systematically studied to explore its potential application in the suppression of vibration. The polygon is formed by the skeleton structure of the cat’s entire body and the ground. The BIPS system consists of two symmetrical bionic legs with three robs(as skeleton) and four horizontal springs(as muscle). Two bionic legs are connected through the bearing platform(as spine),which could adjust the distance between the two bionic legs. A theoretical model is developed to characterize its stiffness nonlinearity through geometrical and mechanical analysis. Parameter analysis reveals that the BIPS structure has diverse stiffness,including nonlinear positive stiffness and negative stiffness. By imitating adjustment of leg posture and telescopic function of the spine(control the distance between legs),these flexible stiffness properties can be adjusted by structure parameters. In addition,the load capacity and working range can also be designed by the length of the bars,the initial angle,the mounting position,and the spring stiffness. The experimental setup is established,and the vibration isolation performance under various excitation is tested. The experimental results verify the accuracy of the dynamic model and also show that the proposed BIPS structure can suppress the vibration effectively under a variety of excitations. These peculiarities may provide potential possibility of an innovative approach to passive vibration control and isolation.展开更多
文摘The vibration of three-dimensional frame structures was studied as receptance motion. A receptance model was constructed for passive vibration reduction. First, the universal receptance computational method suitable to any combination of boundary conditions was given, and then the way of passive damping-damping elements was analyzed, and an iterative approach to select optimal damping positions, whose dissipated paver is larger than the others, was proposed bared on the results of receptance analysis. The results show that, the receptance model is very suitable for local modification and analysis of structures.
基金supported by the National Basic Research Program of China ("973" Project) (Grant No. 2006CB601206)
文摘Kagome based high authority shape morphing structure is a kind of truss-cored sandwich metal plate with a planar Kagome truss as one of its face plane. The planar Kagome truss can achieve arbitrary in-plane nodal displacements with minimal internal resistance when its rods are deformed. Moreover, the in-plane deflection of the planar Kagome truss may induce the lateral deflection of the whole sandwich plate. In this paper, the feasibility to enhance the damping of the truss-cored sandwich plate through the replacement of a very small portion of rods in the planar Kagome truss by cylindrical viscoelastic dampers is exploited. The Biot model is chosen to simulate the behavior of the viscoelastic material in the dampers, and the fraction of axial modal strain energy of the rods in the planar Kagome truss is adopted as the index to decide the positions of the dampers. Through complex modal analysis and time-domain simulation, it is shown that the passive vibration control approach is very effective for the vibration reduction of this kind of truss-cored sandwich plates.
基金This work was supported by the Strategic Priority Research Program of the Chinese Academy of Science(Grant No.XDA1502070404)the Projects of Science Technology Development Plan of Jilin Province(Grant No.20190302102GX).
文摘The performance of an optical system with sensitive line-of-sight(LOS)is influenced by rotational vibration.In view of this,a design methodology is proposed for a passive vibration isolation system in an optical system with sensitive LOS.Rotational vibration is attributed to two sources:transmitted from the mounting base and generated by modal coupling.Therefore,the elimination of the rotational vibration caused by coupling becomes an important part of the design of the isolation system.Additionally,the decoupling conditions of the system can be obtained.When the system is totally decoupled,the vibration on each degree of freedom(DOF)can be analyzed independently.Therefore,the stiffness and damping coefficient on each DOF could be obtained by limiting the vibration transmissibility,in accordance to actual requirements.The design of a vibration isolation system must be restricted by the size and shape of the payload and the installation space,and the layout constrains are thus also discussed.
文摘In this paper,a hybrid passive/active vibration(HPAV)controller of a loosely connected spacecraft consisting of a servicing satellite,a target and an X-shape structure isolator is first proposed to suppress vibrations of the system when subjected to the impulsive external excitations during the on-orbit missions.The passive dynamic response of the combined system can be adjusted appropriately to achieve the desired vibration isolation performance by tuning the structural parameters of the bio-inspired X-shape structure.Moreover,the adaptive control design through dynamic scaling technique is selected as the active component to maintain high vibration isolation performance in the presence of parameter uncertainties such as mass of the satellite platform,the damping and rotation friction coefficients of the X-shape structure.Compared with the pure passive system and the traditional spring-mass-damper(SMD)isolator,the HPAV strategy witnesses lower transmissibility,smaller vibration amplitude and higher convergence rate when subjected to the post-capture impact.Numerical simulations demonstrate the feasibility and validity of the proposed hybrid control scheme in suppressing vibrations of the free-floating spacecraft.
基金Sponsored by the National 863 Project of China (Grant No. 863 -2 -416)
文摘By analyzing the correlation between modal calculations and modal experiments of a typical supporter, an effective finite element analysis( FEA)model of the actual aerospace supporter is created. According to the analysis of constrained viscoelastic damping, the strategies of PVC have been worked out, and the correlation between modal calculations and modal experiments of the supporter has also been computed, and then, an experiment has been designed based on the calculation results. The results of experiments verify that the PVC strategy can effectively suppress vibration.
基金supported in part by the Australian Government through the Australian Research Council Discovery Project DP160103501.
文摘The first International Symposium on Dynamics,Monitoring,and Diagnostics was held in Chongqing,China,in April 2022.The Symposium,which was attended both virtually and in person,had an audience of 2000 and was aimed at enhancing the intelligence of condition monitoring for engineering systems.During the Symposium,five keynote addresses were delivered by world leading experts,and this paper is comprised of summaries of these addresses to ensure that the important messages of these speakers are properly on record and readily able to be referenced.
基金This work was supported by the National Science Fund for Distinguished Young Scholars(Grant No.11625208)the Innovation Program of Shanghai Municipal Education Commission(Grant No.2019-01-07-00-02-E00030)the Program of Shanghai Academic/Technology Research Leader(Grant No.19XD1421600)。
文摘Inspired by the safe landing of a cat falling from a high altitude,a bio-inspired polygonal skeleton(BIPS) structure is proposed,and its nonlinear characteristics are systematically studied to explore its potential application in the suppression of vibration. The polygon is formed by the skeleton structure of the cat’s entire body and the ground. The BIPS system consists of two symmetrical bionic legs with three robs(as skeleton) and four horizontal springs(as muscle). Two bionic legs are connected through the bearing platform(as spine),which could adjust the distance between the two bionic legs. A theoretical model is developed to characterize its stiffness nonlinearity through geometrical and mechanical analysis. Parameter analysis reveals that the BIPS structure has diverse stiffness,including nonlinear positive stiffness and negative stiffness. By imitating adjustment of leg posture and telescopic function of the spine(control the distance between legs),these flexible stiffness properties can be adjusted by structure parameters. In addition,the load capacity and working range can also be designed by the length of the bars,the initial angle,the mounting position,and the spring stiffness. The experimental setup is established,and the vibration isolation performance under various excitation is tested. The experimental results verify the accuracy of the dynamic model and also show that the proposed BIPS structure can suppress the vibration effectively under a variety of excitations. These peculiarities may provide potential possibility of an innovative approach to passive vibration control and isolation.