Recent research shows that it is possible to achieve the full-duplex system by cancelling strong self-interference signals, which can be divided into three classes respectively, i.e., passive cancellation, active canc...Recent research shows that it is possible to achieve the full-duplex system by cancelling strong self-interference signals, which can be divided into three classes respectively, i.e., passive cancellation, active cancellation and digital cancellation. This pa- per tries to achieve the full-duplex system without using active cancellation, thus a full-duplex system using a joint mechanism based on a novel passive cancellation method and a novel digital cancellation method is proposed. Therein, a good antenna place- ment guided by the theory of the antenna electromagnetic field for the passive cancellation is presented. For the proposed digital can- cellation method, unlike previous separate mechanisms, it is de- signed by using the recursive least square (RLS) algorithm jointly with passive cancellation. The self-interference channel state in- formation (CSI) is transferred as the input of digital cancellation to balance the performance and the complexity. Experimental results show that the proposed self-interference cancellation mechanism can achieve about 85 dB which is better than the previous re- search. Meanwhile, this design provides a better performance compared with half-duplex with both line-of-sight channel and non- line-of-sight channel.展开更多
基金supported by the National Natural Science Foundation of China(601720456103200661271282)
文摘Recent research shows that it is possible to achieve the full-duplex system by cancelling strong self-interference signals, which can be divided into three classes respectively, i.e., passive cancellation, active cancellation and digital cancellation. This pa- per tries to achieve the full-duplex system without using active cancellation, thus a full-duplex system using a joint mechanism based on a novel passive cancellation method and a novel digital cancellation method is proposed. Therein, a good antenna place- ment guided by the theory of the antenna electromagnetic field for the passive cancellation is presented. For the proposed digital can- cellation method, unlike previous separate mechanisms, it is de- signed by using the recursive least square (RLS) algorithm jointly with passive cancellation. The self-interference channel state in- formation (CSI) is transferred as the input of digital cancellation to balance the performance and the complexity. Experimental results show that the proposed self-interference cancellation mechanism can achieve about 85 dB which is better than the previous re- search. Meanwhile, this design provides a better performance compared with half-duplex with both line-of-sight channel and non- line-of-sight channel.