A novel low radar cross-section(RCS)and high gain patch antenna array is proposed.A pair of slots introduced on the mushroom electromagnetic bandgap(EBG)patch realize polarization-dependency and act as parasitic radia...A novel low radar cross-section(RCS)and high gain patch antenna array is proposed.A pair of slots introduced on the mushroom electromagnetic bandgap(EBG)patch realize polarization-dependency and act as parasitic radiation to enhance the antenna gain.A chessboard-like configuration composed of slot-EBG blocks is further equipped on the antenna array for scattering cancellation.Optimizing the layout pattern enables the designing of a high-gain and low-RCS antenna array using the slot-EBGs.Full-wave simulations validate that a front gain enhancement of more than 2.5.dB in the operating frequency band and low-RCS in a broad frequency band for normal incidence are obtained by the proposed antenna array.展开更多
基金National Natural Science Foundation of China(U1730102)the National Key R&D Program of China(2017YFB0202500)。
文摘A novel low radar cross-section(RCS)and high gain patch antenna array is proposed.A pair of slots introduced on the mushroom electromagnetic bandgap(EBG)patch realize polarization-dependency and act as parasitic radiation to enhance the antenna gain.A chessboard-like configuration composed of slot-EBG blocks is further equipped on the antenna array for scattering cancellation.Optimizing the layout pattern enables the designing of a high-gain and low-RCS antenna array using the slot-EBGs.Full-wave simulations validate that a front gain enhancement of more than 2.5.dB in the operating frequency band and low-RCS in a broad frequency band for normal incidence are obtained by the proposed antenna array.