Background: The signal-to-noise ratio (SNR) is recognized as an index of measurements reproducibility. We derive the maximum likelihood estimators of SNR and discuss confidence interval construction on the difference ...Background: The signal-to-noise ratio (SNR) is recognized as an index of measurements reproducibility. We derive the maximum likelihood estimators of SNR and discuss confidence interval construction on the difference between two correlated SNRs when the readings are from bivariate normal and bivariate lognormal distribution. We use the Pearsons system of curves to approximate the difference between the two estimates and use the bootstrap methods to validate the approximate distributions of the statistic of interest. Methods: The paper uses the delta method to find the first four central moments, and hence the skewness and kurtosis which are important in the determination of the parameters of the Pearsons distribution. Results: The approach is illustrated in two examples;one from veterinary microbiology and food safety data and the other on data from clinical medicine. We derived the four central moments of the target statistics, together with the bootstrap method to evaluate the parameters of Pearsons distribution. The fitted Pearsons curves of Types I and II were recommended based on the available data. The R-codes are also provided to be readily used by the readers.展开更多
Efficiently performing high-resolution direction of arrival(DOA)estimation under low signal-to-noise ratio(SNR)conditions has always been a challenge task in the literatures.Obvi-ously,in order to address this problem...Efficiently performing high-resolution direction of arrival(DOA)estimation under low signal-to-noise ratio(SNR)conditions has always been a challenge task in the literatures.Obvi-ously,in order to address this problem,the key is how to mine or reveal as much DOA related in-formation as possible from the degraded array outputs.However,it is certain that there is no per-fect solution for low SNR DOA estimation designed in the way of winner-takes-all.Therefore,this paper proposes to explore in depth the complementary DOA related information that exists in spa-tial spectrums acquired by different basic DOA estimators.Specifically,these basic spatial spec-trums are employed as the input of multi-source information fusion model.And the multi-source in-formation fusion model is composed of three heterogeneous meta learning machines,namely neural networks(NN),support vector machine(SVM),and random forests(RF).The final meta-spec-trum can be obtained by performing a final decision-making method.Experimental results illus-trate that the proposed information fusion based DOA estimation method can really make full use of the complementary information in the spatial spectrums obtained by different basic DOA estim-ators.Even under low SNR conditions,promising DOA estimation performance can be achieved.展开更多
Based on chaotic oscillator system, this paper proposes a novel method on high frequency low signal- to-noise ratio BPSK( Binary Phase Shift Keying) signal detection. Chaotic oscillator system is a typical non-lin- ...Based on chaotic oscillator system, this paper proposes a novel method on high frequency low signal- to-noise ratio BPSK( Binary Phase Shift Keying) signal detection. Chaotic oscillator system is a typical non-lin- ear system which is sensitive to periodic signals and immune to noise at the same time. Those properties make it possible to detect low signal-to-noise ratio signals. The BPSK signal is a common signal type which is widely used in modern communication. Starting from the analysis of advantages of chaotic, os~.illator system and signal features of the BPSK signal, we put forward a unique method that can detect low signar-to-noise ratio BPSK sig- nals with high frequency. The simulation results show that the novel method can dclct.t low signal-to-noise ratio BPSK signals with frequency in an order of magnitude of l0s Hz, and the input Signal-to-Noise Ratio threshold can be -20 dB.展开更多
Factors influencing the signal-to-noise ratio (SNR) of lensless ghost interference with thermal incoherent light are investigated. Our result shows that the SNR of lensless ghost interference is related to the trans...Factors influencing the signal-to-noise ratio (SNR) of lensless ghost interference with thermal incoherent light are investigated. Our result shows that the SNR of lensless ghost interference is related to the transverse length of the object, the position of the object in the imaging system and the transverse size of the light source. Furthermore, the effects of these factors on the SNR are discussed in detail by numerical simulations.展开更多
The results of comparative theoretical analyzes of the behavior of internal low-frequency noises, signal-to-noise ratio and sensitivity to DNA molecules for EIS and ISFET based nanosize biosensors are presented. It is...The results of comparative theoretical analyzes of the behavior of internal low-frequency noises, signal-to-noise ratio and sensitivity to DNA molecules for EIS and ISFET based nanosize biosensors are presented. It is shown that EIS biosensor is more sensitive to the presence of DNA molecules in aqueous solution than ISFET sensor. Internal electrical noises level decreases with the increase of concentration of DNA molecules in aqueous solution. In the frequency range 10−3 - 103 Hz noises level for EIS sensor about in three orders is higher than for ISFET sensor. In the other hand, signal-to-noise ratio for capacitive EIS biosensor is much higher than for ISFET sensor.展开更多
As one of the important indicators of spectrometer,signal-to-noise ratio(SNR)reflects the ability of spectrometer to detect weak signals.To investigate the influence of SNR on the prediction accuracy of spectral analy...As one of the important indicators of spectrometer,signal-to-noise ratio(SNR)reflects the ability of spectrometer to detect weak signals.To investigate the influence of SNR on the prediction accuracy of spectral analysis,we first introduce the major factors affecting the spectral SNR.Taking green tea as an example,the influence of spectral SNR on the prediction accuracy of the origin identification model is analyzed by experiments.At the same time,the relationship between the spectral SNR and prediction accuracy of spectral analysis model is fitted.Based on this,the common methods for improving the spectral SNR are discussed.The results show that the accuracy of the prediction set model first decreases slowly,then decreases linearly,and finally tends to be flat as the spectral SNR decreases.Through calculation,in order to achieve the prediction accuracy of prediction model reaching 90%and 85%,the spectral SNR is required to be higher than 23.42 dB and 21.16 dB,respectively.The overall results provide certain parameters support for the development of new online analytical spectroscopic instruments,especially for the technical indicators of SNR.展开更多
We report a method of high-sensitively detecting the weak signal in photoassociation (PA) spectra of ultracold NaCs molecules by phase sensitive-demodulated trap-loss spectra of Na atoms from a photomultiplier tube....We report a method of high-sensitively detecting the weak signal in photoassociation (PA) spectra of ultracold NaCs molecules by phase sensitive-demodulated trap-loss spectra of Na atoms from a photomultiplier tube. We find that the signal-to-noise ratio (SNR) of the PA spectra is strongly dependent on the integration time and the sensitivity of the lock-in amplifier, and our results show reasonable agreement with the theoretical analyses of the SNR with the demodulation parameters. Meanwhile, we investigate the effect of the interaction time of the PA laser with the colliding Na-Cs atom pairs on the SNR of the PA spectra. The atom loss rate is dependent on both the PA-induced atom loss and the loading of the MOT. The high-sensitive detection of the excited ultracold NaCs molecules lays a solid foundation for further study of the formation and application of ultracold NaCs molecules.展开更多
Raman spectroscopy has been widely used to characterize the physical properties of two-dimensional materials(2DMs).The signal-to-noise ratio(SNR or S/N ratio)of Raman signal usually serves as an important indicator to...Raman spectroscopy has been widely used to characterize the physical properties of two-dimensional materials(2DMs).The signal-to-noise ratio(SNR or S/N ratio)of Raman signal usually serves as an important indicator to evaluate the instrumental performance rather than Raman intensity itself.Multichannel detectors with outstanding sensitivity,rapid acquisition speed and low noise level have been widely equipped in Raman instruments for the measurement of Raman signal.In this mini-review,we first introduce the recent advances of Raman spectroscopy of 2DMs.Then we take the most commonly used CCD detector and IGA array detector as examples to overview the various noise sources in Raman measurements and analyze their potential influences on SNR of Raman signal in experiments.This overview can contribute to a better understanding on the SNR of Raman signal and the performance of multichannel detector for numerous researchers and instrumental design for industry,as well as offer practical strategies for improving spectral quality in routine measurement.展开更多
At present,most signal-to-noise ratio(SNR)estimation methods can only calculate the global and not the local SNR of seismic data.This paper proposes a calculation method of a structure-oriented-based seismic SNR attri...At present,most signal-to-noise ratio(SNR)estimation methods can only calculate the global and not the local SNR of seismic data.This paper proposes a calculation method of a structure-oriented-based seismic SNR attribute.The purpose is to characterize the temporal and spatial variation of the seismic data SNR.First,the local slope parameters of the seismic events are calculated using a plane wave decomposition filter.Then,the singular value decomposition method is used to calculate the local seismic data SNR,thereby obtaining it in time and space.The proposed method overcomes the insufficiency of a conventional global SNR to characterize any local seismic data features and uses the SNR as an attribute of seismic data to more accurately describe the signal-noise energy distribution characteristics of seismic data in time and space.The results of a theoretical model test and real data processing show that the SNR attribute can be used not only for seismic data quality evaluation but also for analysis and evaluation of denoising methods.展开更多
Grating-based x-ray phase contrast imaging has the potential to be applied in future medical applications as it is compatible with both laboratory and synchrotron source. However, information retrieval methods are imp...Grating-based x-ray phase contrast imaging has the potential to be applied in future medical applications as it is compatible with both laboratory and synchrotron source. However, information retrieval methods are important because acquisition speed, scanning mode, image quality, and radiation dose depend on them. Phase-stepping (PS) is a widely used method to retrieve information, while angular signal radiography (ASR) is a newly established method. In this manuscript, signal-to-noise ratios (SNRs) of ASR are compared with that of PS. Numerical experiments are performed to validate theoretical results. SNRs comparison shows that for refraction and scattering images ASR has higher SNR than PS method, while for absorption image both methods have same SNR. Therefore, our conclusions would have guideline in future preclinical and clinical applications.展开更多
We theoretically investigate the collective response of an ensemble of leaky integrate-and-fire neuron units to a noisy periodic signal by including local spatially correlated noise. By using the linear response theor...We theoretically investigate the collective response of an ensemble of leaky integrate-and-fire neuron units to a noisy periodic signal by including local spatially correlated noise. By using the linear response theory, we obtained the analytic expression of signal-to-noise ratio (SNR). Numerical simulation results show that the rms amplitude of internal noise can be increased up to?an optimal value where the output SNR reaches a maximum value. Due to the existence of the local spatially correlated noise in the units of the ensemble, the SNR gain of the collective ensemble response can exceed unity and can be optimized when the nearest-neighborhood correlation is negative. This nonlinear collective phenomenon of SNR gain amplification in an ensemble of leaky integrate-and-fire neuron units can be related to the array stochastic resonance (SR) phenomenon. Furthermore, we also show that the SNR gain can also be optimized by tuning the number of neuron units, frequency and?amplitude of the weak periodic signal. The present study illustrates the potential to utilize the local spatially correlation noise and the number of ensemble units for optimizing the collective response of the neuron to inputs, as well as a guidance in the design of information processing devices to weak signal detection.展开更多
YTB block in Sichuan basin is a favorable area to exploit oil and gas in shallow tight rock. 3D seismic project of this zone has two characteristics. Firstly, it has high requirements for the tolerance rate of the con...YTB block in Sichuan basin is a favorable area to exploit oil and gas in shallow tight rock. 3D seismic project of this zone has two characteristics. Firstly, it has high requirements for the tolerance rate of the construction process and the acquisition of high signal-to-noise ratio seismic data;Second, there are widely obstacles and noises that lead to difficult acquisition construction organization. In acquisition practice, high signal-to-noise ratio seismic data was obtained by reasonable design of construction scheme, optimization of excitation parameters, improvement of receiving conditions and optimization of obstacle crossing observation system. .展开更多
Based on the finite element method, a numerical investigation into the bonded repair efficiency of cracked plates under in plane biaxial loadings is presented. The main considerations are: reduction in stress intensi...Based on the finite element method, a numerical investigation into the bonded repair efficiency of cracked plates under in plane biaxial loadings is presented. The main considerations are: reduction in stress intensity factor (SIF) at the crack tip, the maximum tensile stress in the composite patch and the maximum shear stress in the adhesive bond between the patch and the plate. Without the patch, a tensile or compressive stress parallel to the crack has no effect on the SIF at the crack tip. While with a composite patch, there exists coupling effect between the normal stress parallel to the crack and the SIF, and the coupling effect depends significantly on ply orientation of the patch and the biaxial stress ratio of the plate.展开更多
Hierarchical clustering algorithm has been applied to identify the X-ray diffraction(XRD)patterns from a high-throughput characterization of the combinatorial materials chips.As data quality is usually correlated with...Hierarchical clustering algorithm has been applied to identify the X-ray diffraction(XRD)patterns from a high-throughput characterization of the combinatorial materials chips.As data quality is usually correlated with acquisition time,it is important to study the hierarchical clustering performance as a function of data quality in order to optimize the efficiency of high-throughput experiments.This work investigated the effects of signal-to-noise ratio on the performance of hier-archical clustering using 29 distance metrics for the XRD patterns from Fe−Co−Ni ternary combinatorial materials chip.It is found that the clustering accuracies evaluated by the F1 score only fluctuate slightly with signal-to-noise ratio varying from 15.5 to 22.3(dB)under the experimental condition.This suggests that although it may take 40-50 s to collect a visually high-quality diffraction pattern,the measurement time could be significantly reduced to as low as 4 s without substantial loss in phase identification accuracy by hierarchical clustering.Among the 29 distance metrics,Pearsonχ^(2)shows the highest mean F1 score of 0.77 and lowest standard deviation of 0.008.It shows that the distance matrixes calculated by Pearsonχ^(2)are mainly controlled by the XRD peak shifting characteristics and visualized by the metric multidimensional data scaling.展开更多
Although various types of geophones are applied in seismic exploration,there are only three common types of signals produced by geophones:displacement,velocity,and acceleration signals.Currently,our understanding of t...Although various types of geophones are applied in seismic exploration,there are only three common types of signals produced by geophones:displacement,velocity,and acceleration signals.Currently,our understanding of the signal characteristics,such as the generation mechanism,the geophysical properties,and the significance of the corresponding rock physics,remains unclear,which makes it difficult to both scientifically evaluate and take full advantage of the different types of geophones.In this paper,the mechanism by which seismic waves are generated is studied based on the spring–damped vibration theory.The physical characteristics of the three above-mentioned signal types and the relationships among the physical properties of the signals and medium are analyzed,as well as the signalto-noise ratio(SNR),resolution,and spectrum characteristics.Based on laboratory tests,field experiments,and applications,we obtained the following conclusions.The acceleration signal reflects the elastic characteristics of the medium and the change rules,and the signal strength is positively correlated with physical property changes.The acceleration signal has favorable attributes,such as small distortion,high fidelity,strong high-frequency amplitudes,and a wide frequency band.Therefore,the acceleration signal is more suitable for high-precision seismic exploration of complex media.In addition,the P-wave acceleration signal more accurately reflects the elastic Young modulus,shear modulus,and density changes than the velocity signal.However,the sensitivity decreases with increasing shear modulus and density.For the S-wave,the acceleration signal is more sensitive to the shear modulus and density than the velocity signal.展开更多
Ubiquitous radar is a new radar system that provides continuous and uninterrupted multifunction capability within a coverage volume. Continuous coverage from close-in "pop-up" targets in clutter to long-range target...Ubiquitous radar is a new radar system that provides continuous and uninterrupted multifunction capability within a coverage volume. Continuous coverage from close-in "pop-up" targets in clutter to long-range targets impacts selection of waveform parameters. The coherent processing interval (CPI) must be long enough to achieve a certain signal-to-noise ratio (SNR) that ensures the efficiency of detection. The condition of detection in the case of low SNR is analyzed, and three different cases that would occur during integration are discussed and a method to determine the CPI is presented. The simulation results show that targets detection with SNR as low as -26 dB in the experimental system can possibly determine the CPI.展开更多
In this paper,the stochastic-resonance-based tri-stable energy harvester(TEH)is proposed to enhance harvesting performance under random rotational vibration.An electromechanical coupled system interfaced with a standa...In this paper,the stochastic-resonance-based tri-stable energy harvester(TEH)is proposed to enhance harvesting performance under random rotational vibration.An electromechanical coupled system interfaced with a standard rectifier circuit driven by colored noise is considered.The stationary probability density function(SPDF)of the harvester is obtained by the improved stochastic averaging.Then,with the adiabatic approximation theory,the analytical expression of signal-to-noise ratio(SNR)for the TEH is deduced to characterize stochastic resonance(SR).To enhance direct current(DC)power delivery from a rotational TEH,the influences of system parameters on SR is discussed.The obtained results suggest that there are damping-induced resonance and noise-intensity-induced SR in the tri-stable system.The TEH has higher harvesting performance under the optimal SR.That is,the optimal parameter combinations can induce optimal SR and maximize harvesting performance.Thus,the stochastic-resonance-based TEH can be optimized to enhance energy harvesting through choosing the optimal parameter.展开更多
In this paper, we propose a mechanism named modified backoff (MB) mechanism to decrease the channel idle time in IEEE 802.11 distributed coordination function (DCF). In the noisy channel, when signal-to-noise rat...In this paper, we propose a mechanism named modified backoff (MB) mechanism to decrease the channel idle time in IEEE 802.11 distributed coordination function (DCF). In the noisy channel, when signal-to-noise ratio (SNR) is low, applying this mechanism in DCF greatly improves the throughput and lowers the channel idle time. This paper presents an analytical model for the performance study of IEEE 802.11 MB-DCF for nonsaturated heterogeneous traffic in the presence of transmission errors. First, we introduce the MB-DCF and compare its performance to IEEE 802.11 DCF with binary exponential backoff (BEB). The IEEE 802.11 DCF with BEB mechanism suffers from more channel idle time under low SNR. The MB-DCF ensures high throughput and low packet delay by reducing the channel idle time under the low traffic in the network. However, to the best of the authors' knowledge, there are no previous works that enhance the performance of the DCF under imperfect wireless channel. We show through analysis that the proposed mechanism greatly outperforms the original IEEE 802.11 DCF in the imperfect channel condition. The effectiveness of physical and link layer parameters on throughput performance is explored. We also present a throughput investigation of the heterogeneous traffic for different radio conditions.展开更多
Because of the former gas chemistry examination method defects, tunable diode laser absorption spectrum technology (TDLAS) was used. It used an isolated absorption spectrum of the gas molecule to measure the gas abs...Because of the former gas chemistry examination method defects, tunable diode laser absorption spectrum technology (TDLAS) was used. It used an isolated absorption spectrum of the gas molecule to measure the gas absorption spectrum in order to distinguish the gas conveniently. The second harmonic (20 was measured in this system. Due to the fact which the harmonious signal is proportional to the concentration of the absorption gas, the gas concentration may be obtained through examining harmonious signal. The theoretical analysis and the experimental result indicate that under the same level of pressure, survey with the signal-to-noise ratio(SNR) of 2fsignal increases the accuracy by one order of magnitude and may reach 10 ^-3 and the sensitivity may reach the 10^-6 level compared to that of direct absorption. 5% methane density and a 30 cm absorption cell were used in the experiment. It has several advantages including high sensitivity, best resolution, and faster response and so on. The gas concentration monitoring of coal mine may be accomplished.展开更多
Texture synthesis has been developed for several years.The traditional technique can generate a larger image from a small image while avoid feeling of repetition or uncontinuity.Some constrained synthesis methods whic...Texture synthesis has been developed for several years.The traditional technique can generate a larger image from a small image while avoid feeling of repetition or uncontinuity.Some constrained synthesis methods which can synthesize image according to special location demand or other demands have been also proposed in recent years.However,in general,these constrained texture synthesis methods are simple and have few controllable factors to meet user's diverse needs.To control multiple-sample texture synthesis more flexibly in various aspects such as synthesis location,proportion and semantic objects,we present an interactive texture synthesis approach based on circular patches and constrained by objects according to a certain ratio.With this approach,source exemplars and the target image are firstly divided into several regions with different characters.Users can click the blocks in the source exemplars and the want-to-be-synthesized region in the target image,and then texture in the target image is synthesized with the corresponding regions in the source exemplars.In the process of texture synthesis,circular patch instead of square patch is used to eliminate the aliasing phenomena.Images are synthesized from multiple sample images with ratio constraint and experiments on images show that our approach can get effective results of ratio-constrained multi-sample synthesis.展开更多
文摘Background: The signal-to-noise ratio (SNR) is recognized as an index of measurements reproducibility. We derive the maximum likelihood estimators of SNR and discuss confidence interval construction on the difference between two correlated SNRs when the readings are from bivariate normal and bivariate lognormal distribution. We use the Pearsons system of curves to approximate the difference between the two estimates and use the bootstrap methods to validate the approximate distributions of the statistic of interest. Methods: The paper uses the delta method to find the first four central moments, and hence the skewness and kurtosis which are important in the determination of the parameters of the Pearsons distribution. Results: The approach is illustrated in two examples;one from veterinary microbiology and food safety data and the other on data from clinical medicine. We derived the four central moments of the target statistics, together with the bootstrap method to evaluate the parameters of Pearsons distribution. The fitted Pearsons curves of Types I and II were recommended based on the available data. The R-codes are also provided to be readily used by the readers.
基金the National Natural Science Foundation of China(Nos.11774073 and 51279033).
文摘Efficiently performing high-resolution direction of arrival(DOA)estimation under low signal-to-noise ratio(SNR)conditions has always been a challenge task in the literatures.Obvi-ously,in order to address this problem,the key is how to mine or reveal as much DOA related in-formation as possible from the degraded array outputs.However,it is certain that there is no per-fect solution for low SNR DOA estimation designed in the way of winner-takes-all.Therefore,this paper proposes to explore in depth the complementary DOA related information that exists in spa-tial spectrums acquired by different basic DOA estimators.Specifically,these basic spatial spec-trums are employed as the input of multi-source information fusion model.And the multi-source in-formation fusion model is composed of three heterogeneous meta learning machines,namely neural networks(NN),support vector machine(SVM),and random forests(RF).The final meta-spec-trum can be obtained by performing a final decision-making method.Experimental results illus-trate that the proposed information fusion based DOA estimation method can really make full use of the complementary information in the spatial spectrums obtained by different basic DOA estim-ators.Even under low SNR conditions,promising DOA estimation performance can be achieved.
文摘Based on chaotic oscillator system, this paper proposes a novel method on high frequency low signal- to-noise ratio BPSK( Binary Phase Shift Keying) signal detection. Chaotic oscillator system is a typical non-lin- ear system which is sensitive to periodic signals and immune to noise at the same time. Those properties make it possible to detect low signal-to-noise ratio signals. The BPSK signal is a common signal type which is widely used in modern communication. Starting from the analysis of advantages of chaotic, os~.illator system and signal features of the BPSK signal, we put forward a unique method that can detect low signar-to-noise ratio BPSK sig- nals with high frequency. The simulation results show that the novel method can dclct.t low signal-to-noise ratio BPSK signals with frequency in an order of magnitude of l0s Hz, and the input Signal-to-Noise Ratio threshold can be -20 dB.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11074307 and 10774192)the Opening Research Foundation of State Key Laboratory of Precision Spectroscopy,ECNU
文摘Factors influencing the signal-to-noise ratio (SNR) of lensless ghost interference with thermal incoherent light are investigated. Our result shows that the SNR of lensless ghost interference is related to the transverse length of the object, the position of the object in the imaging system and the transverse size of the light source. Furthermore, the effects of these factors on the SNR are discussed in detail by numerical simulations.
文摘The results of comparative theoretical analyzes of the behavior of internal low-frequency noises, signal-to-noise ratio and sensitivity to DNA molecules for EIS and ISFET based nanosize biosensors are presented. It is shown that EIS biosensor is more sensitive to the presence of DNA molecules in aqueous solution than ISFET sensor. Internal electrical noises level decreases with the increase of concentration of DNA molecules in aqueous solution. In the frequency range 10−3 - 103 Hz noises level for EIS sensor about in three orders is higher than for ISFET sensor. In the other hand, signal-to-noise ratio for capacitive EIS biosensor is much higher than for ISFET sensor.
基金Key Research and Development Program of Anhui Province(No.201904a07020073)Science and Technology Foundation of Electronic Test&Measurement Laboratory(No.6142001180307)National Basic Research Program(No.JSJL2018210C003)。
文摘As one of the important indicators of spectrometer,signal-to-noise ratio(SNR)reflects the ability of spectrometer to detect weak signals.To investigate the influence of SNR on the prediction accuracy of spectral analysis,we first introduce the major factors affecting the spectral SNR.Taking green tea as an example,the influence of spectral SNR on the prediction accuracy of the origin identification model is analyzed by experiments.At the same time,the relationship between the spectral SNR and prediction accuracy of spectral analysis model is fitted.Based on this,the common methods for improving the spectral SNR are discussed.The results show that the accuracy of the prediction set model first decreases slowly,then decreases linearly,and finally tends to be flat as the spectral SNR decreases.Through calculation,in order to achieve the prediction accuracy of prediction model reaching 90%and 85%,the spectral SNR is required to be higher than 23.42 dB and 21.16 dB,respectively.The overall results provide certain parameters support for the development of new online analytical spectroscopic instruments,especially for the technical indicators of SNR.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0304203)the Chang Jiang Scholars and Innovative Research Team in the University of the Ministry of Education of China(Grant No.IRT13076)+2 种基金the National Natural Science Foundation of China(Grant Nos.91436108,61378014,61675121,61705123,and 61722507)the Fund for Shanxi“1331 Project”Key Subjects Construction,Chinathe Foundation for Outstanding Young Scholars of Shanxi Province,China(Grant No.201601D021001)
文摘We report a method of high-sensitively detecting the weak signal in photoassociation (PA) spectra of ultracold NaCs molecules by phase sensitive-demodulated trap-loss spectra of Na atoms from a photomultiplier tube. We find that the signal-to-noise ratio (SNR) of the PA spectra is strongly dependent on the integration time and the sensitivity of the lock-in amplifier, and our results show reasonable agreement with the theoretical analyses of the SNR with the demodulation parameters. Meanwhile, we investigate the effect of the interaction time of the PA laser with the colliding Na-Cs atom pairs on the SNR of the PA spectra. The atom loss rate is dependent on both the PA-induced atom loss and the loading of the MOT. The high-sensitive detection of the excited ultracold NaCs molecules lays a solid foundation for further study of the formation and application of ultracold NaCs molecules.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFA0301204)the National Natural Science Foundation of China(Grant No.11874350)Key Research Program of the Chinese Academy of Sciences(Grant Nos.XDPB22 and ZDBS-LY-SLH004).
文摘Raman spectroscopy has been widely used to characterize the physical properties of two-dimensional materials(2DMs).The signal-to-noise ratio(SNR or S/N ratio)of Raman signal usually serves as an important indicator to evaluate the instrumental performance rather than Raman intensity itself.Multichannel detectors with outstanding sensitivity,rapid acquisition speed and low noise level have been widely equipped in Raman instruments for the measurement of Raman signal.In this mini-review,we first introduce the recent advances of Raman spectroscopy of 2DMs.Then we take the most commonly used CCD detector and IGA array detector as examples to overview the various noise sources in Raman measurements and analyze their potential influences on SNR of Raman signal in experiments.This overview can contribute to a better understanding on the SNR of Raman signal and the performance of multichannel detector for numerous researchers and instrumental design for industry,as well as offer practical strategies for improving spectral quality in routine measurement.
基金supported by National Natural Science Foundation of China(No.41604094)Open Fund of Key Laboratory of Exploration Technologies for Oil and Gas Resources(Yangtze University),Ministry of Education(No.K2018-13)
文摘At present,most signal-to-noise ratio(SNR)estimation methods can only calculate the global and not the local SNR of seismic data.This paper proposes a calculation method of a structure-oriented-based seismic SNR attribute.The purpose is to characterize the temporal and spatial variation of the seismic data SNR.First,the local slope parameters of the seismic events are calculated using a plane wave decomposition filter.Then,the singular value decomposition method is used to calculate the local seismic data SNR,thereby obtaining it in time and space.The proposed method overcomes the insufficiency of a conventional global SNR to characterize any local seismic data features and uses the SNR as an attribute of seismic data to more accurately describe the signal-noise energy distribution characteristics of seismic data in time and space.The results of a theoretical model test and real data processing show that the SNR attribute can be used not only for seismic data quality evaluation but also for analysis and evaluation of denoising methods.
基金Project supported by the National Research and Development Project for Key Scientific Instruments(Grant No.CZBZDYZ20140002)the National Natural Science Foundation of China(Grant Nos.11535015,11305173,and 11375225)+2 种基金the project supported by Institute of High Energy Physics,Chinese Academy of Sciences(Grant No.Y4545320Y2)the Fundamental Research Funds for the Central Universities(Grant No.WK2310000065)Wali Faiz,acknowledges and wishes to thank the Chinese Academy of Sciences and The World Academy of Sciences(CAS-TWAS)President’s Fellowship Program for generous financial support
文摘Grating-based x-ray phase contrast imaging has the potential to be applied in future medical applications as it is compatible with both laboratory and synchrotron source. However, information retrieval methods are important because acquisition speed, scanning mode, image quality, and radiation dose depend on them. Phase-stepping (PS) is a widely used method to retrieve information, while angular signal radiography (ASR) is a newly established method. In this manuscript, signal-to-noise ratios (SNRs) of ASR are compared with that of PS. Numerical experiments are performed to validate theoretical results. SNRs comparison shows that for refraction and scattering images ASR has higher SNR than PS method, while for absorption image both methods have same SNR. Therefore, our conclusions would have guideline in future preclinical and clinical applications.
文摘We theoretically investigate the collective response of an ensemble of leaky integrate-and-fire neuron units to a noisy periodic signal by including local spatially correlated noise. By using the linear response theory, we obtained the analytic expression of signal-to-noise ratio (SNR). Numerical simulation results show that the rms amplitude of internal noise can be increased up to?an optimal value where the output SNR reaches a maximum value. Due to the existence of the local spatially correlated noise in the units of the ensemble, the SNR gain of the collective ensemble response can exceed unity and can be optimized when the nearest-neighborhood correlation is negative. This nonlinear collective phenomenon of SNR gain amplification in an ensemble of leaky integrate-and-fire neuron units can be related to the array stochastic resonance (SR) phenomenon. Furthermore, we also show that the SNR gain can also be optimized by tuning the number of neuron units, frequency and?amplitude of the weak periodic signal. The present study illustrates the potential to utilize the local spatially correlation noise and the number of ensemble units for optimizing the collective response of the neuron to inputs, as well as a guidance in the design of information processing devices to weak signal detection.
文摘YTB block in Sichuan basin is a favorable area to exploit oil and gas in shallow tight rock. 3D seismic project of this zone has two characteristics. Firstly, it has high requirements for the tolerance rate of the construction process and the acquisition of high signal-to-noise ratio seismic data;Second, there are widely obstacles and noises that lead to difficult acquisition construction organization. In acquisition practice, high signal-to-noise ratio seismic data was obtained by reasonable design of construction scheme, optimization of excitation parameters, improvement of receiving conditions and optimization of obstacle crossing observation system. .
文摘Based on the finite element method, a numerical investigation into the bonded repair efficiency of cracked plates under in plane biaxial loadings is presented. The main considerations are: reduction in stress intensity factor (SIF) at the crack tip, the maximum tensile stress in the composite patch and the maximum shear stress in the adhesive bond between the patch and the plate. Without the patch, a tensile or compressive stress parallel to the crack has no effect on the SIF at the crack tip. While with a composite patch, there exists coupling effect between the normal stress parallel to the crack and the SIF, and the coupling effect depends significantly on ply orientation of the patch and the biaxial stress ratio of the plate.
基金funded by the National Key Research and Development Program of China(Grant Nos.2021YFB370-2102 and 2017YFB0701900).
文摘Hierarchical clustering algorithm has been applied to identify the X-ray diffraction(XRD)patterns from a high-throughput characterization of the combinatorial materials chips.As data quality is usually correlated with acquisition time,it is important to study the hierarchical clustering performance as a function of data quality in order to optimize the efficiency of high-throughput experiments.This work investigated the effects of signal-to-noise ratio on the performance of hier-archical clustering using 29 distance metrics for the XRD patterns from Fe−Co−Ni ternary combinatorial materials chip.It is found that the clustering accuracies evaluated by the F1 score only fluctuate slightly with signal-to-noise ratio varying from 15.5 to 22.3(dB)under the experimental condition.This suggests that although it may take 40-50 s to collect a visually high-quality diffraction pattern,the measurement time could be significantly reduced to as low as 4 s without substantial loss in phase identification accuracy by hierarchical clustering.Among the 29 distance metrics,Pearsonχ^(2)shows the highest mean F1 score of 0.77 and lowest standard deviation of 0.008.It shows that the distance matrixes calculated by Pearsonχ^(2)are mainly controlled by the XRD peak shifting characteristics and visualized by the metric multidimensional data scaling.
基金supported by the National Major Science and Technology Project of“the 13th Five-year Plan”(No.2017ZX05005004003)。
文摘Although various types of geophones are applied in seismic exploration,there are only three common types of signals produced by geophones:displacement,velocity,and acceleration signals.Currently,our understanding of the signal characteristics,such as the generation mechanism,the geophysical properties,and the significance of the corresponding rock physics,remains unclear,which makes it difficult to both scientifically evaluate and take full advantage of the different types of geophones.In this paper,the mechanism by which seismic waves are generated is studied based on the spring–damped vibration theory.The physical characteristics of the three above-mentioned signal types and the relationships among the physical properties of the signals and medium are analyzed,as well as the signalto-noise ratio(SNR),resolution,and spectrum characteristics.Based on laboratory tests,field experiments,and applications,we obtained the following conclusions.The acceleration signal reflects the elastic characteristics of the medium and the change rules,and the signal strength is positively correlated with physical property changes.The acceleration signal has favorable attributes,such as small distortion,high fidelity,strong high-frequency amplitudes,and a wide frequency band.Therefore,the acceleration signal is more suitable for high-precision seismic exploration of complex media.In addition,the P-wave acceleration signal more accurately reflects the elastic Young modulus,shear modulus,and density changes than the velocity signal.However,the sensitivity decreases with increasing shear modulus and density.For the S-wave,the acceleration signal is more sensitive to the shear modulus and density than the velocity signal.
文摘Ubiquitous radar is a new radar system that provides continuous and uninterrupted multifunction capability within a coverage volume. Continuous coverage from close-in "pop-up" targets in clutter to long-range targets impacts selection of waveform parameters. The coherent processing interval (CPI) must be long enough to achieve a certain signal-to-noise ratio (SNR) that ensures the efficiency of detection. The condition of detection in the case of low SNR is analyzed, and three different cases that would occur during integration are discussed and a method to determine the CPI is presented. The simulation results show that targets detection with SNR as low as -26 dB in the experimental system can possibly determine the CPI.
基金This work has been supported by the National Natural Science Foundation of China(Grant No.12072025)Beijing Natural Science 5 Foundation(Grant No.1222015)the Natural Science Basic Research Program of Shaanxi Province(Grant No.2022JQ-044).
文摘In this paper,the stochastic-resonance-based tri-stable energy harvester(TEH)is proposed to enhance harvesting performance under random rotational vibration.An electromechanical coupled system interfaced with a standard rectifier circuit driven by colored noise is considered.The stationary probability density function(SPDF)of the harvester is obtained by the improved stochastic averaging.Then,with the adiabatic approximation theory,the analytical expression of signal-to-noise ratio(SNR)for the TEH is deduced to characterize stochastic resonance(SR).To enhance direct current(DC)power delivery from a rotational TEH,the influences of system parameters on SR is discussed.The obtained results suggest that there are damping-induced resonance and noise-intensity-induced SR in the tri-stable system.The TEH has higher harvesting performance under the optimal SR.That is,the optimal parameter combinations can induce optimal SR and maximize harvesting performance.Thus,the stochastic-resonance-based TEH can be optimized to enhance energy harvesting through choosing the optimal parameter.
文摘In this paper, we propose a mechanism named modified backoff (MB) mechanism to decrease the channel idle time in IEEE 802.11 distributed coordination function (DCF). In the noisy channel, when signal-to-noise ratio (SNR) is low, applying this mechanism in DCF greatly improves the throughput and lowers the channel idle time. This paper presents an analytical model for the performance study of IEEE 802.11 MB-DCF for nonsaturated heterogeneous traffic in the presence of transmission errors. First, we introduce the MB-DCF and compare its performance to IEEE 802.11 DCF with binary exponential backoff (BEB). The IEEE 802.11 DCF with BEB mechanism suffers from more channel idle time under low SNR. The MB-DCF ensures high throughput and low packet delay by reducing the channel idle time under the low traffic in the network. However, to the best of the authors' knowledge, there are no previous works that enhance the performance of the DCF under imperfect wireless channel. We show through analysis that the proposed mechanism greatly outperforms the original IEEE 802.11 DCF in the imperfect channel condition. The effectiveness of physical and link layer parameters on throughput performance is explored. We also present a throughput investigation of the heterogeneous traffic for different radio conditions.
基金Supported by National Natural Science Foundation of China (50574005) Natural Science Foundation of Education Department of Anhui, China (2005KJ081)
文摘Because of the former gas chemistry examination method defects, tunable diode laser absorption spectrum technology (TDLAS) was used. It used an isolated absorption spectrum of the gas molecule to measure the gas absorption spectrum in order to distinguish the gas conveniently. The second harmonic (20 was measured in this system. Due to the fact which the harmonious signal is proportional to the concentration of the absorption gas, the gas concentration may be obtained through examining harmonious signal. The theoretical analysis and the experimental result indicate that under the same level of pressure, survey with the signal-to-noise ratio(SNR) of 2fsignal increases the accuracy by one order of magnitude and may reach 10 ^-3 and the sensitivity may reach the 10^-6 level compared to that of direct absorption. 5% methane density and a 30 cm absorption cell were used in the experiment. It has several advantages including high sensitivity, best resolution, and faster response and so on. The gas concentration monitoring of coal mine may be accomplished.
基金Supported by the National Natural Science Foundation of China(60533080)
文摘Texture synthesis has been developed for several years.The traditional technique can generate a larger image from a small image while avoid feeling of repetition or uncontinuity.Some constrained synthesis methods which can synthesize image according to special location demand or other demands have been also proposed in recent years.However,in general,these constrained texture synthesis methods are simple and have few controllable factors to meet user's diverse needs.To control multiple-sample texture synthesis more flexibly in various aspects such as synthesis location,proportion and semantic objects,we present an interactive texture synthesis approach based on circular patches and constrained by objects according to a certain ratio.With this approach,source exemplars and the target image are firstly divided into several regions with different characters.Users can click the blocks in the source exemplars and the want-to-be-synthesized region in the target image,and then texture in the target image is synthesized with the corresponding regions in the source exemplars.In the process of texture synthesis,circular patch instead of square patch is used to eliminate the aliasing phenomena.Images are synthesized from multiple sample images with ratio constraint and experiments on images show that our approach can get effective results of ratio-constrained multi-sample synthesis.