期刊文献+
共找到1,488篇文章
< 1 2 75 >
每页显示 20 50 100
Improved Ant Colony-Genetic Algorithm for Information Transmission Path Optimization in Remanufacturing Service System 被引量:7
1
作者 Lei Wang Xu-Hui Xia +2 位作者 Jian-Hua Cao Xiang Liu Jun-Wei Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第6期106-117,共12页
The information transmission path optimization(ITPO) can often a ect the e ciency and accuracy of remanufactur?ing service. However, there is a greater degree of uncertainty and complexity in information transmission ... The information transmission path optimization(ITPO) can often a ect the e ciency and accuracy of remanufactur?ing service. However, there is a greater degree of uncertainty and complexity in information transmission of remanu?facturing service system, which leads to a critical need for designing planning models to deal with this added uncer?tainty and complexity. In this paper, a three?dimensional(3D) model of remanufacturing service information network for information transmission is developed, which combines the physic coordinate and the transmitted properties of all the devices in the remanufacturing service system. In order to solve the basic ITPO in the 3D model, an improved 3D ant colony algorithm(Improved AC) was put forward. Moreover, to further improve the operation e ciency of the algorithm, an improved ant colony?genetic algorithm(AC?GA) that combines the improved AC and genetic algorithm was developed. In addition, by taking the transmission of remanufacturing service demand information of certain roller as example, the e ectiveness of AC?GA algorithm was analyzed and compared with that of improved AC, and the results demonstrated that AC?GA algorithm was superior to AC algorithm in aspects of information transmission delay, information transmission cost, and rate of information loss. 展开更多
关键词 Remanufacturing service Information transmission path optimization Ant colony algorithm genetic algorithm
下载PDF
Neural network and genetic algorithm based global path planning in a static environment 被引量:2
2
作者 杜歆 陈华华 顾伟康 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第6期549-554,共6页
Mobile robot global path planning in a static environment is an important problem. The paper proposes a method of global path planning based on neural network and genetic algorithm. We constructed the neural network m... Mobile robot global path planning in a static environment is an important problem. The paper proposes a method of global path planning based on neural network and genetic algorithm. We constructed the neural network model of environmental information in the workspace for a robot and used this model to establish the relationship between a collision avoidance path and the output of the model. Then the two-dimensional coding for the path via-points was converted to one-dimensional one and the fitness of both the collision avoidance path and the shortest distance are integrated into a fitness function. The simulation results showed that the proposed method is correct and effective. 展开更多
关键词 Mobile robot Neural network genetic algorithm Global path planning Fitness function
下载PDF
A genetic algorithm for the pareto optimal solution set of multi-objective shortest path problem 被引量:2
3
作者 胡仕成 徐晓飞 战德臣 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第6期721-726,共6页
Unlike the shortest path problem that has only one optimal solution and can be solved in polynomial time, the muhi-objective shortest path problem ( MSPP ) has a set of pareto optimal solutions and cannot be solved ... Unlike the shortest path problem that has only one optimal solution and can be solved in polynomial time, the muhi-objective shortest path problem ( MSPP ) has a set of pareto optimal solutions and cannot be solved in polynomial time. The present algorithms focused mainly on how to obtain a precisely pareto optimal solution for MSPP resulting in a long time to obtain multiple pareto optimal solutions with them. In order to obtain a set of satisfied solutions for MSPP in reasonable time to meet the demand of a decision maker, a genetic algo- rithm MSPP-GA is presented to solve the MSPP with typically competing objectives, cost and time, in this pa- per. The encoding of the solution and the operators such as crossover, mutation and selection are developed. The algorithm introduced pareto domination tournament and sharing based selection operator, which can not only directly search the pareto optimal frontier but also maintain the diversity of populations in the process of evolutionary computation. Experimental results show that MSPP-GA can obtain most efficient solutions distributed all along the pareto frontier in less time than an exact algorithm. The algorithm proposed in this paper provides a new and effective method of how to obtain the set of pareto optimal solutions for other multiple objective optimization problems in a short time. 展开更多
关键词 shortest path multi-objective optimization tournament selection pareto optimum genetic algorithm
下载PDF
An Improved Genetic Algorithm for Flight Path Re-Routes with Reduced Passenger Impact 被引量:2
4
作者 Babatope Samuel Ayo 《Journal of Computer and Communications》 2017年第7期65-75,共11页
Adverse weather has serious implications for flight timeliness, as well as passenger and aircraft safety. This often implies that alternative flight paths have to be used by aircraft to avoid adverse weather. To reduc... Adverse weather has serious implications for flight timeliness, as well as passenger and aircraft safety. This often implies that alternative flight paths have to be used by aircraft to avoid adverse weather. To reduce the impact of such path re-routes, exact techniques such as artificial potential field model and Dijkstra’s algorithms have been proposed. However, such approaches are often unsuitable for real time scenarios involving large number of waypoints and constraints. This has led to the use of metaheuristic techniques that give sub-optimal solutions in good time. In this work, an improved genetic algorithm-based technique has been proposed. The algorithm used an improved mutation operator, reduced passenger inconvenience and considered the schedules of aircraft. 展开更多
关键词 FLIGHT WEATHER Shortest path genetic algorithm PASSENGER Inconvenience
下载PDF
Niche pseudo-parallel genetic algorithms for path optimization of autonomous mobile robot 被引量:1
5
作者 沈志华 赵英凯 吴炜炜 《Journal of Shanghai University(English Edition)》 CAS 2006年第5期449-453,共5页
A new genetic algorithm named niche pseudo-parallel genetic algorithm (NPPGA) is presented for path evolution and genetic optimization of autonomous mobile robot. The NPPGA is an effective improvement to maintain th... A new genetic algorithm named niche pseudo-parallel genetic algorithm (NPPGA) is presented for path evolution and genetic optimization of autonomous mobile robot. The NPPGA is an effective improvement to maintain the population diversity as well for the sake of avoiding premature and strengthen parallelism of the population to accelerate the search process combined with niche genetic algorithms and pseudo-parallel genetic algorithms. The proposed approach is evaluated by robotic path optimization, which is a specific application of traveler salesman problem (TSP). Experimental results indicated that a shortest path could be obtained in the practical traveling salesman problem named "Robot tour around Pekin", and the performance conducted by NPPGA is better than simple genetic algorithm (SGA) and distributed paralell genetic algorithms (DPGA). 展开更多
关键词 genetic algorithms traveler salesman problem (TSP) path optimization NICHE pseudo-parallel.
下载PDF
Robot path planning using genetic algorithms 被引量:1
6
作者 朴松昊 洪炳熔 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2001年第3期215-217,共3页
Presents a strategy for soccer robot path planning using genetic algorithms for which, real number coding method is used, to overcome the defects of binary coding method, and the double crossover operation adopted, to... Presents a strategy for soccer robot path planning using genetic algorithms for which, real number coding method is used, to overcome the defects of binary coding method, and the double crossover operation adopted, to avoid the common defect of early convergence and converge faster than the standard genetic algorithms concludes from simulation results that the method is effective for robot path planning. 展开更多
关键词 path planning soccer robot genetic algorithms
下载PDF
NOVEL APPROACH FOR ROBOT PATH PLANNING BASED ON NUMERICAL ARTIFICIAL POTENTIAL FIELD AND GENETIC ALGORITHM 被引量:2
7
作者 WANG Weizhong ZHAO Jie GAO Yongsheng CAI Hegao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第3期340-343,共4页
A novel approach for collision-free path planning of a multiple degree-of-freedom (DOF) articulated robot in a complex environment is proposed. Firstly, based on visual neighbor point (VNP), a numerical artificial... A novel approach for collision-free path planning of a multiple degree-of-freedom (DOF) articulated robot in a complex environment is proposed. Firstly, based on visual neighbor point (VNP), a numerical artificial potential field is constructed in Cartesian space, which provides the heuristic information, effective distance to the goal and the motion direction for the motion of the robot joints. Secondly, a genetic algorithm, combined with the heuristic rules, is used in joint space to determine a series of contiguous configurations piecewise from initial configuration until the goal configuration is attained. A simulation shows that the method can not only handle issues on path planning of the articulated robots in environment with complex obstacles, but also improve the efficiency and quality of path planning. 展开更多
关键词 Robot path planning Artificial potential field genetic algorithm
下载PDF
Adaptive genetic algorithm for path planning of loosely coordinated multi-robot manipulators 被引量:1
8
作者 高胜 赵杰 蔡鹤皋 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2003年第1期72-76,共5页
Adaptive genetic algorithm A SA GA, a novel algorithm, which can dynamically modify the parameters of Genetic Algorithms in terms of simulated annealing mechanism, is proposed for path planning of loosely coordinated ... Adaptive genetic algorithm A SA GA, a novel algorithm, which can dynamically modify the parameters of Genetic Algorithms in terms of simulated annealing mechanism, is proposed for path planning of loosely coordinated multi robot manipulators. Over the task space of a multi robot, a strategy of decoupled planning is also applied to the evolutionary process, which enables a multi robot to avoid falling into deadlock and calculating of composite C space. Finally, two representative tests are given to validate A SA GA and the strategy of decoupled planning. 展开更多
关键词 multi robot path planning adaptive genetic algorithm simulated annealing decoupled planning
下载PDF
Extrapolation for Aeroengine Gas Path Faults with SVM Bases on Genetic Algorithm
9
作者 Yixiong Yu 《Sound & Vibration》 2019年第5期237-243,共7页
Mining aeroengine operational data and developing fault diagnosis models for aeroengines are to avoid running aeroengines under undesired conditions.Because of the complexity of working environment and faults of aeroe... Mining aeroengine operational data and developing fault diagnosis models for aeroengines are to avoid running aeroengines under undesired conditions.Because of the complexity of working environment and faults of aeroengines,it is unavoidable that the monitored parameters vary widely and possess larger noise levels.This paper reports the extrapolation of a diagnosis model for 20 gas path faults of a double-spool turbofan civil aeroengine.By applying support vector machine(SVM)algorithm together with genetic algorithm(GA),the fault diagnosis model is obtained from the training set that was based on the deviations of the monitored parameters superimposed with the noise level of 10%.The SVM model(C=24.7034;γ=179.835)was extrapolated for the samples whose noise levels were larger than 10%.The accuracies of extrapolation for samples with the noise levels of 20%and 30%are 97%and 94%,respectively.Compared with the models reported on the same faults,the extrapolation results of the GASVM model are accurate. 展开更多
关键词 AEROENGINE EXTRAPOLATION gas path fault diagnosis genetic algorithm support vector machine
下载PDF
Research on the memory cutting path of shearer based on genetic algorithm
10
作者 MI Jin-peng TAN Chao +1 位作者 ZHANG Li-li SUN Dong-pei 《Journal of Coal Science & Engineering(China)》 2010年第3期333-336,共4页
In order to realize the memory cutting of a shearer, made use of the memorizedcutting path and acquisitioned cutting parameters, and realized the teaching and playbackof the cutting path.In order to optimize the memor... In order to realize the memory cutting of a shearer, made use of the memorizedcutting path and acquisitioned cutting parameters, and realized the teaching and playbackof the cutting path.In order to optimize the memory cutting path of a shearer, took intoaccount the constraints of coal mining craft, coal quality and the adaption faculty of coalmining equipments.Genetic algorithm theory was used to optimize the memory cutting ofshearer and simulate with Matlab, and realized the most valuable mining recovery rate.The experimental results show that the optimization of the memory cutting path of ashearer based on the genetic algorithm is feasible and obtains the most valuable memorycutting path, improving the ability of shearer automatic cutting. 展开更多
关键词 shearer drums automatic adjustment height memory cutting cutting path optimize genetic algorithm
下载PDF
Genetic algorithm for pareto optimum-based route selection 被引量:1
11
作者 Cui Xunxue Li Qin Tao Qing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第2期360-368,共9页
A quality of service (QoS) or constraint-based routing selection needs to find a path subject to multiple constraints through a network. The problem of finding such a path is known as the multi-constrained path (MC... A quality of service (QoS) or constraint-based routing selection needs to find a path subject to multiple constraints through a network. The problem of finding such a path is known as the multi-constrained path (MCP) problem, and has been proven to be NP-complete that cannot be exactly solved in a polynomial time. The NPC problem is converted into a multiobjective optimization problem with constraints to be solved with a genetic algorithm. Based on the Pareto optimum, a constrained routing computation method is proposed to generate a set of nondominated optimal routes with the genetic algorithm mechanism. The convergence and time complexity of the novel algorithm is analyzed. Experimental results show that multiobjective evolution is highly responsive and competent for the Pareto optimum-based route selection. When this method is applied to a MPLS and metropolitan-area network, it will be capable of optimizing the transmission performance. 展开更多
关键词 Route selection Multiobjective optimization Pareto optimum Multi-constrained path genetic algorithm.
下载PDF
Application of GA, PSO, and ACO Algorithms to Path Planning of Autonomous Underwater Vehicles 被引量:8
12
作者 Mohammad Pourmahmood Aghababa Mohammad Hossein Amrollahi Mehdi Borjkhani 《Journal of Marine Science and Application》 2012年第3期378-386,共9页
In this paper, an underwater vehicle was modeled with six dimensional nonlinear equations of motion, controlled by DC motors in all degrees of freedom. Near-optimal trajectories in an energetic environment for underwa... In this paper, an underwater vehicle was modeled with six dimensional nonlinear equations of motion, controlled by DC motors in all degrees of freedom. Near-optimal trajectories in an energetic environment for underwater vehicles were computed using a nnmerical solution of a nonlinear optimal control problem (NOCP). An energy performance index as a cost function, which should be minimized, was defmed. The resulting problem was a two-point boundary value problem (TPBVP). A genetic algorithm (GA), particle swarm optimization (PSO), and ant colony optimization (ACO) algorithms were applied to solve the resulting TPBVP. Applying an Euler-Lagrange equation to the NOCP, a conjugate gradient penalty method was also adopted to solve the TPBVP. The problem of energetic environments, involving some energy sources, was discussed. Some near-optimal paths were found using a GA, PSO, and ACO algorithms. Finally, the problem of collision avoidance in an energetic environment was also taken into account. 展开更多
关键词 path planning autonomous underwater vehicle genetic algorithm (GA) particle swarmoptimization (PSO) ant colony optimization (ACO) collision avoidance
下载PDF
Research on Model and Algorithm of Task Allocation and Path Planning for Multi-Robot 被引量:2
13
作者 Zhenping Li Xueting Li 《Open Journal of Applied Sciences》 2017年第10期511-519,共9页
Based on the modeling of robot working environment, the shortest distance matrix between points is solved by Floyd algorithm. With the objective of minimizing the sum of the fixed cost of robot and the cost of robot o... Based on the modeling of robot working environment, the shortest distance matrix between points is solved by Floyd algorithm. With the objective of minimizing the sum of the fixed cost of robot and the cost of robot operation, an integer programming model is established and a genetic algorithm for solving the model is designed. In order to make coordination to accomplish their respective tasks for each robot with high efficiency, this paper uses natural number encoding way. The objective function is based on penalty term constructed with the total number of collisions in the running path of robots. The fitness function is constructed by using the objective function with penalty term. Based on elitist retention strategy, a genetic algorithm with collision detection is designed. Using this algorithm for task allocation and path planning of multi-robot, it can effectively avoid or reduce the number of collisions in the process of multi-robot performing tasks. Finally, an example is used to validate the method. 展开更多
关键词 path Planning TASK ALLOCATION COLLISION Detection Mathematical Model genetic algorithm
下载PDF
An Investigation on the Effect of Migration Strategy on Parallel GA-Based Shortest Path Routing Algorithm
14
作者 Salman Yussof Rina Azlin Razali 《Communications and Network》 2012年第2期93-100,共8页
Genetic algorithm (GA) is one of the alternative approaches for solving the shortest path routing problem. In previous work, we have developed a coarse-grained parallel GA-based shortest path routing algorithm. With p... Genetic algorithm (GA) is one of the alternative approaches for solving the shortest path routing problem. In previous work, we have developed a coarse-grained parallel GA-based shortest path routing algorithm. With parallel GA, there is a GA operator called migration, where a chromosome is taken from one sub-population to replace a chromosome in another sub-population. Which chromosome to be taken and replaced is subjected to the migration strategy used. There are four different migration strategies that can be employed: best replace worst, best replace random, random replace worst, and random replace random. In this paper, we are going to evaluate the effect of different migration strategies on the parallel GA-based routing algorithm that has been developed in the previous work. Theoretically, the migration strategy best replace worst should perform better than the other strategies. However, result from simulation shows that even though the migration strategy best replace worst performs better most of the time, there are situations when one of the other strategies can perform just as well, or sometimes better. 展开更多
关键词 PARALLEL genetic algorithm Shortest path ROUTING MIGRATION Strategy
下载PDF
基于混合遗传算法的多无人机巡逻路径优化 被引量:1
15
作者 李国军 郑滋椀 +2 位作者 范英盛 卢甜甜 徐志江 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2024年第1期21-28,共8页
假设无人机巡逻的起、终点均为派出所,提出了一种融合传统遗传算法和爬山算法的警用无人机巡逻路径优化模型——混合遗传算法。按照轮盘赌法则,进行种群个体的选择,以增大优秀种群个体被选中的概率,达到较好的优化效果。同时定义了与路... 假设无人机巡逻的起、终点均为派出所,提出了一种融合传统遗传算法和爬山算法的警用无人机巡逻路径优化模型——混合遗传算法。按照轮盘赌法则,进行种群个体的选择,以增大优秀种群个体被选中的概率,达到较好的优化效果。同时定义了与路径优化相适应的基因交叉和变异规则。仿真结果表明,提出的混合遗传算法在寻优效果上明显优于传统遗传算法。 展开更多
关键词 遗传算法 爬山算法 巡逻 路径优化
下载PDF
改进蚁群算法的送餐机器人路径规划 被引量:4
16
作者 蔡军 钟志远 《智能系统学报》 CSCD 北大核心 2024年第2期370-380,共11页
蚁群算法拥有良好的全局性、自组织性、鲁棒性,但传统蚁群算法存在许多不足之处。为此,针对算法在路径规划问题中的缺陷,在传统蚁群算法的状态转移公式中,引入目标点距离因素和引导素,加快算法收敛性和改善局部最优缺陷。在带时间窗的... 蚁群算法拥有良好的全局性、自组织性、鲁棒性,但传统蚁群算法存在许多不足之处。为此,针对算法在路径规划问题中的缺陷,在传统蚁群算法的状态转移公式中,引入目标点距离因素和引导素,加快算法收敛性和改善局部最优缺陷。在带时间窗的车辆路径问题(vehicle routing problem with time windows,VRPTW)上,融合蚁群算法和遗传算法,并将顾客时间窗宽度以及机器人等待时间加入蚁群算法状态转移公式中,以及将蚁群算法的解作为遗传算法的初始种群,提高遗传算法的初始解质量,然后进行编码,设置违反时间窗约束和载重量的惩罚函数和适应度函数,在传统遗传算法的交叉、变异操作后加入了破坏-修复基因的操作来优化每一代新解的质量,在Solomon Benchmark算例上进行仿真,对比算法改进前后的最优解,验证算法可行性。最后在餐厅送餐问题中把带有障碍物的仿真环境路径规划问题和VRPTW问题结合,使用改进后的算法解决餐厅环境下送餐机器人对顾客服务配送问题。 展开更多
关键词 蚁群算法 遗传算法 状态转移公式 适应度函数 引导素 局部最优 初始种群 时间窗约束 路径规划
下载PDF
多搬运任务下考虑碰撞避免的AGV路径规划 被引量:2
17
作者 张艳菊 吴俊 +1 位作者 程锦倩 陈泽荣 《计算机应用研究》 CSCD 北大核心 2024年第5期1462-1469,共8页
为提升自动导引小车在“货到人”仓库中的运行效率,针对AGV-托盘任务分配、单AGV路径规划及多AGV碰撞避免三个子问题的研究,以最小化AGV行驶距离为目标构建数学模型。首先,根据AGV与托盘的双边匹配问题特点设计改进的匈牙利算法求解匹... 为提升自动导引小车在“货到人”仓库中的运行效率,针对AGV-托盘任务分配、单AGV路径规划及多AGV碰撞避免三个子问题的研究,以最小化AGV行驶距离为目标构建数学模型。首先,根据AGV与托盘的双边匹配问题特点设计改进的匈牙利算法求解匹配结果。其次,提出一种二维编码机制的改进遗传算法(improved genetic algorithm,IGA),采用一种局部搜索算子代替原变异操作,在提高算法搜索性能的基础上使其成功应用于单AGV路径规划问题。然后,利用时空数据设计一种三维网格冲突检测方法,并根据商品SKU数量设定AGV的优先级以降低多AGV执行任务时的碰撞概率。最后,在32 m×22 m的仓库中针对不考虑碰撞与考虑碰撞两种情形进行AGV路径优化分析,给出合理的行驶距离和碰撞次数。IGA与标准遗传算法的对比结果显示,IGA能够在合理的时间内获得更高质量的解,行驶距离减少约1.74%,算法求解时间缩短约37.07%。此外,针对AGV数量灵敏度分析,在不同目标托盘规模下测试不同数量的AGV对行驶距离和碰撞次数的影响,发现14~16台AGV数量是最佳配置,验证了模型的可行性和算法的有效性。 展开更多
关键词 智能仓库 AGV路径规划 碰撞避免 双边匹配 改进的遗传算法
下载PDF
无人驾驶车辆路径跟踪混合控制策略研究 被引量:1
18
作者 李兆凯 刘新宁 +2 位作者 彭国轩 孙雪 陈涛 《汽车技术》 CSCD 北大核心 2024年第3期37-46,共10页
针对单一控制算法无法同时满足无人驾驶车辆对路径跟踪精度和控制器求解速度需求的问题,提出一种基于线性二次型调节器(LQR)和模型预测控制(MPC)的混合控制策略。该策略在低速工况下使用线性二次型调节器、在高速工况下使用模型预测控... 针对单一控制算法无法同时满足无人驾驶车辆对路径跟踪精度和控制器求解速度需求的问题,提出一种基于线性二次型调节器(LQR)和模型预测控制(MPC)的混合控制策略。该策略在低速工况下使用线性二次型调节器、在高速工况下使用模型预测控制算法进行路径跟踪控制,在此基础上设计基于有限状态机(FSM)的控制算法切换机制,并通过遗传算法(GA)对控制参数进行优化,基于CarSim和MATLAB/Simulink仿真平台对混合控制策略进行仿真验证,并进一步完成了实车试验。试验结果表明,所设计的混合控制策略能够在提高跟踪精度的基础上缩短计算时间,与单一控制算法相比,平均横向误差和平均航向误差分别减小了26.3%和39.6%,平均计算时间缩短了10.9%。 展开更多
关键词 路径跟踪 线性二次型调节器 模型预测控制 有限状态机 遗传算法
下载PDF
改进Q-Learning的路径规划算法研究
19
作者 宋丽君 周紫瑜 +2 位作者 李云龙 侯佳杰 何星 《小型微型计算机系统》 CSCD 北大核心 2024年第4期823-829,共7页
针对Q-Learning算法学习效率低、收敛速度慢且在动态障碍物的环境下路径规划效果不佳的问题,本文提出一种改进Q-Learning的移动机器人路径规划算法.针对该问题,算法根据概率的突变性引入探索因子来平衡探索和利用以加快学习效率;通过在... 针对Q-Learning算法学习效率低、收敛速度慢且在动态障碍物的环境下路径规划效果不佳的问题,本文提出一种改进Q-Learning的移动机器人路径规划算法.针对该问题,算法根据概率的突变性引入探索因子来平衡探索和利用以加快学习效率;通过在更新函数中设计深度学习因子以保证算法探索概率;融合遗传算法,避免陷入局部路径最优同时按阶段探索最优迭代步长次数,以减少动态地图探索重复率;最后提取输出的最优路径关键节点采用贝塞尔曲线进行平滑处理,进一步保证路径平滑度和可行性.实验通过栅格法构建地图,对比实验结果表明,改进后的算法效率相较于传统算法在迭代次数和路径上均有较大优化,且能够较好的实现动态地图下的路径规划,进一步验证所提方法的有效性和实用性. 展开更多
关键词 移动机器人 路径规划 Q-Learning算法 平滑处理 动态避障
下载PDF
基于改进遗传算法的细纱接头路径指引方法
20
作者 王庆峰 黄克华 +4 位作者 张立杰 李辉 董相杰 曹玉胜 朱伟伟 《棉纺织技术》 CAS 2024年第1期7-12,共6页
为了提高细纱车间整体断头的接头效率,在细纱单锭监测系统响应到细纱断头信息的条件下,建立以整体车间断头接头路径最优化为目标函数的细纱接头路径指引模型,并运用Python编程语言分别实现对贪心算法、遗传算法和改进遗传算法接头路径... 为了提高细纱车间整体断头的接头效率,在细纱单锭监测系统响应到细纱断头信息的条件下,建立以整体车间断头接头路径最优化为目标函数的细纱接头路径指引模型,并运用Python编程语言分别实现对贪心算法、遗传算法和改进遗传算法接头路径模型的求解,结合传统巡回式接头路径与3种算法在效率、运行速度和解的质量上的仿真测试,对比验证改进遗传算法用于细纱接头路径指引方法的可行性。试验结果表明:相较于传统巡回式路径,改进遗传算法平均效率提升了11.8%,且解均优于其他两种算法;相较于遗传算法,改进遗传算法的响应时间缩短较多,平均为1.25 s,且波动较小,时间效率提升了80.3%。认为:改进遗传算法在效率、运行速度和解的质量上都优于其他算法,在细纱接头领域具有较高的应用优势,能够显著提高接头效率和降低成本。 展开更多
关键词 细纱接头 路径指引 单锭监测 贪心算法 遗传算法
下载PDF
上一页 1 2 75 下一页 到第
使用帮助 返回顶部