A shortest path routing algorithm based on transient chaotic neural network is proposed in this paper. Gam-pared with previous models adopting Hopfield neural network, this algorithm has a higher ability to overcome t...A shortest path routing algorithm based on transient chaotic neural network is proposed in this paper. Gam-pared with previous models adopting Hopfield neural network, this algorithm has a higher ability to overcome the local minimum, and achieves a better performance. By introducing a special post-processing technique for the output matrixes, our algorithm can obtain an optimal solution with a high probability even for the paths that need more hops in large-size networks.展开更多
The network-on-chip (NoC) architecture is a main factor affecting the system performance of complicated multi-processor systems-on-chips (MPSoCs).To evaluate the effects of the NoC architectures on communication effic...The network-on-chip (NoC) architecture is a main factor affecting the system performance of complicated multi-processor systems-on-chips (MPSoCs).To evaluate the effects of the NoC architectures on communication efficiency,several kinds of techniques have been developed,including various simulators and analytical models.The simulators are accurate but time consuming,especially in large space explorations of diverse network configurations;in contrast,the analytical models are fast and flexible,providing alternative methods for performance evaluation.In this paper,we propose a general analytical model to esti-mate the communication performance for arbitrary NoCs with wormhole routing and virtual channel flow control.To resolve the inherent dependency of successive links occupied by one packet in wormhole routing,we propose the routing path decomposition approach to generating a series of ordered link categories.Then we use the traditional queuing system to derive the fine-grained transmission latency for each network component.According to our experiments,the proposed analytical model provides a good approximation of the average packet latency to the simulation results,and estimates the network throughput precisely under various NoC configurations and workloads.Also,the analytical model runs about 10 5 times faster than the cycle-accurate NoC simulator.Practical applications of the model including bottleneck detection and virtual channel allocation are also presented.展开更多
The best-effort internet has inherent limitations on the end-to-end performance for interactive multimedia communications. This paper presents a multiple description coding (MDC) and forward error correction (FEC)...The best-effort internet has inherent limitations on the end-to-end performance for interactive multimedia communications. This paper presents a multiple description coding (MDC) and forward error correction (FEC) based multiple path transmission schemes for interactive multimedia (M3FEC), which improves the end users’ experience by maximizing a rate-distortion (R-D) based optimization problem. The proposed model considers both the network diversity and the application’s stringent requirements, and combines the individual merits of the three promising technologies of multiple path overlay routing, MDC and FEC. Extensive numerical analysis and PlanetLab experiments demonstrate that M3FEC successfully combats packet losses, error propagation, and unpredictable network dynamics. This method also significantly increases distortion for interactive multimedia by over 10 dB than traditional IP-layer single path transmission in poor network environments, and outperforms the performance achieved by using MDC or FEC alone.展开更多
文摘A shortest path routing algorithm based on transient chaotic neural network is proposed in this paper. Gam-pared with previous models adopting Hopfield neural network, this algorithm has a higher ability to overcome the local minimum, and achieves a better performance. By introducing a special post-processing technique for the output matrixes, our algorithm can obtain an optimal solution with a high probability even for the paths that need more hops in large-size networks.
基金supported by the National High-Tech Research and Development Program (863) of China (No.2009AA011706)the Fundamental Research Funds for the Central Universities,China
文摘The network-on-chip (NoC) architecture is a main factor affecting the system performance of complicated multi-processor systems-on-chips (MPSoCs).To evaluate the effects of the NoC architectures on communication efficiency,several kinds of techniques have been developed,including various simulators and analytical models.The simulators are accurate but time consuming,especially in large space explorations of diverse network configurations;in contrast,the analytical models are fast and flexible,providing alternative methods for performance evaluation.In this paper,we propose a general analytical model to esti-mate the communication performance for arbitrary NoCs with wormhole routing and virtual channel flow control.To resolve the inherent dependency of successive links occupied by one packet in wormhole routing,we propose the routing path decomposition approach to generating a series of ordered link categories.Then we use the traditional queuing system to derive the fine-grained transmission latency for each network component.According to our experiments,the proposed analytical model provides a good approximation of the average packet latency to the simulation results,and estimates the network throughput precisely under various NoC configurations and workloads.Also,the analytical model runs about 10 5 times faster than the cycle-accurate NoC simulator.Practical applications of the model including bottleneck detection and virtual channel allocation are also presented.
基金Supported by the National Natural Science Foundation of China(No.90718040)NEC Laboratories China (No.LC-2008-055)
文摘The best-effort internet has inherent limitations on the end-to-end performance for interactive multimedia communications. This paper presents a multiple description coding (MDC) and forward error correction (FEC) based multiple path transmission schemes for interactive multimedia (M3FEC), which improves the end users’ experience by maximizing a rate-distortion (R-D) based optimization problem. The proposed model considers both the network diversity and the application’s stringent requirements, and combines the individual merits of the three promising technologies of multiple path overlay routing, MDC and FEC. Extensive numerical analysis and PlanetLab experiments demonstrate that M3FEC successfully combats packet losses, error propagation, and unpredictable network dynamics. This method also significantly increases distortion for interactive multimedia by over 10 dB than traditional IP-layer single path transmission in poor network environments, and outperforms the performance achieved by using MDC or FEC alone.