This study describes improving network security by implementing and assessing an intrusion detection system(IDS)based on deep neural networks(DNNs).The paper investigates contemporary technical ways for enhancing intr...This study describes improving network security by implementing and assessing an intrusion detection system(IDS)based on deep neural networks(DNNs).The paper investigates contemporary technical ways for enhancing intrusion detection performance,given the vital relevance of safeguarding computer networks against harmful activity.The DNN-based IDS is trained and validated by the model using the NSL-KDD dataset,a popular benchmark for IDS research.The model performs well in both the training and validation stages,with 91.30%training accuracy and 94.38%validation accuracy.Thus,the model shows good learning and generalization capabilities with minor losses of 0.22 in training and 0.1553 in validation.Furthermore,for both macro and micro averages across class 0(normal)and class 1(anomalous)data,the study evaluates the model using a variety of assessment measures,such as accuracy scores,precision,recall,and F1 scores.The macro-average recall is 0.9422,the macro-average precision is 0.9482,and the accuracy scores are 0.942.Furthermore,macro-averaged F1 scores of 0.9245 for class 1 and 0.9434 for class 0 demonstrate the model’s ability to precisely identify anomalies precisely.The research also highlights how real-time threat monitoring and enhanced resistance against new online attacks may be achieved byDNN-based intrusion detection systems,which can significantly improve network security.The study underscores the critical function ofDNN-based IDS in contemporary cybersecurity procedures by setting the foundation for further developments in this field.Upcoming research aims to enhance intrusion detection systems by examining cooperative learning techniques and integrating up-to-date threat knowledge.展开更多
The ever-growing network traffic threat landscape necessitates adopting accurate and robust intrusion detection systems(IDSs).IDSs have become a research hotspot and have seen remarkable performance improvements.Gener...The ever-growing network traffic threat landscape necessitates adopting accurate and robust intrusion detection systems(IDSs).IDSs have become a research hotspot and have seen remarkable performance improvements.Generative adversarial networks(GANs)have also garnered increasing research interest recently due to their remarkable ability to generate data.This paper investigates the application of(GANs)in(IDS)and explores their current use within this research field.We delve into the adoption of GANs within signature-based,anomaly-based,and hybrid IDSs,focusing on their objectives,methodologies,and advantages.Overall,GANs have been widely employed,mainly focused on solving the class imbalance issue by generating realistic attack samples.While GANs have shown significant potential in addressing the class imbalance issue,there are still open opportunities and challenges to be addressed.Little attention has been paid to their applicability in distributed and decentralized domains,such as IoT networks.Efficiency and scalability have been mostly overlooked,and thus,future works must aim at addressing these gaps.展开更多
Pattern matching is one of the most performance-critical components for the content inspection based applications of network security, such as network intrusion detection and prevention.To keep up with the increasing ...Pattern matching is one of the most performance-critical components for the content inspection based applications of network security, such as network intrusion detection and prevention.To keep up with the increasing speed network, this component needs to be accelerated by well designed custom coprocessor.This paper presents a parameterized multilevel pattern matching architecture (MPM) which is used on FPGAs.To achieve less chip area, the architecture is designed based on the idea of selected character decoding (SCD) and multilevel method which are analyzed in detail.This paper also proposes an MPM generator that can generate RTL-level codes of MPM by giving a pattern set and predefined parameters.With the generator, the efficient MPM architecture can be generated and embedded to a total hardware solution.The third contribution is a mathematical model and formula to estimate the chip area for each MPM before it is generated, which is useful for choosing the proper type of FPGAs.One example MPM architecture is implemented by giving 1785 patterns of Snort on Xilinx Virtex 2 Pro FPGA.The results show that this MPM can achieve 4.3 Gbps throughput with 5 stages of pipelines and 0.22 slices per character, about one half chip area of the most area-efficient architecture in literature.Other results are given to show that MPM is also efficient for general random pattern sets.The performance of MPM can be scalable near linearly, potential for more than 100 Gbps throughput.展开更多
Pattern matching is a fundamental approach to detect malicious behaviors and information over Internet, which has been gradually used in high-speed network traffic analysis. However, there is a performance bottleneck ...Pattern matching is a fundamental approach to detect malicious behaviors and information over Internet, which has been gradually used in high-speed network traffic analysis. However, there is a performance bottleneck for multi-pattern matching on online compressed network traffic(CNT), this is because malicious and intrusion codes are often embedded into compressed network traffic. In this paper, we propose an online fast and multi-pattern matching algorithm on compressed network traffic(FMMCN). FMMCN employs two types of jumping, i.e. jumping during sliding window and a string jump scanning strategy to skip unnecessary compressed bytes. Moreover, FMMCN has the ability to efficiently process multiple large volume of networks such as HTTP traffic, vehicles traffic, and other Internet-based services. The experimental results show that FMMCN can ignore more than 89.5% of bytes, and its maximum speed reaches 176.470MB/s in a midrange switches device, which is faster than the current fastest algorithm ACCH by almost 73.15 MB/s.展开更多
The challenge of achieving situational understanding is a limiting factor in effective, timely, and adaptive cyber-security analysis. Anomaly detection fills a critical role in network assessment and trend analysis, b...The challenge of achieving situational understanding is a limiting factor in effective, timely, and adaptive cyber-security analysis. Anomaly detection fills a critical role in network assessment and trend analysis, both of which underlie the establishment of comprehensive situational understanding. To that end, we propose a cyber security data warehouse implemented as a hierarchical graph of aggregations that captures anomalies at multiple scales. Each node of our proposed graph is a summarization table of cyber event aggregations, and the edges are aggregation operators. The cyber security data warehouse enables domain experts to quickly traverse a multi-scale aggregation space systematically. We describe the architecture of a test bed system and a summary of results on the IEEE VAST 2012 Cyber Forensics data.展开更多
A model of intelligent intrusion detection based on rough neural network (RNN), which combines the neural network and rough set, is presented. It works by capturing network packets to identify network intrusions or ma...A model of intelligent intrusion detection based on rough neural network (RNN), which combines the neural network and rough set, is presented. It works by capturing network packets to identify network intrusions or malicious attacks using RNN with sub-nets. The sub-net is constructed by detection-oriented signatures extracted using rough set theory to detect different intrusions. It is proved that RNN detection method has the merits of adaptive, high universality, high convergence speed, easy upgrading and management.展开更多
In this paper,we propose a intrusion detection algorithm based on auto-encoder and three-way decisions(AE-3WD)for industrial control networks,aiming at the security problem of industrial control network.The ideology o...In this paper,we propose a intrusion detection algorithm based on auto-encoder and three-way decisions(AE-3WD)for industrial control networks,aiming at the security problem of industrial control network.The ideology of deep learning is similar to the idea of intrusion detection.Deep learning is a kind of intelligent algorithm and has the ability of automatically learning.It uses self-learning to enhance the experience and dynamic classification capabilities.We use deep learning to improve the intrusion detection rate and reduce the false alarm rate through learning,a denoising AutoEncoder and three-way decisions intrusion detection method AE-3WD is proposed to improve intrusion detection accuracy.In the processing,deep learning AutoEncoder is used to extract the features of high-dimensional data by combining the coefficient penalty and reconstruction loss function of the encode layer during the training mode.A multi-feature space can be constructed by multiple feature extractions from AutoEncoder,and then a decision for intrusion behavior or normal behavior is made by three-way decisions.NSL-KDD data sets are used to the experiments.The experiment results prove that our proposed method can extract meaningful features and effectively improve the performance of intrusion detection.展开更多
Mobile ad hoc networking (MANET) has become an exciting and important technology in recent years, because of the rapid proliferation of wireless devices. Mobile ad hoc networks is highly vulnerable to attacks due to...Mobile ad hoc networking (MANET) has become an exciting and important technology in recent years, because of the rapid proliferation of wireless devices. Mobile ad hoc networks is highly vulnerable to attacks due to the open medium, dynamically changing network topology, cooperative algorithms, and lack of centralized monitoring and management point. The traditional way of protecting networks with firewalls and encryption software is no longer sufficient and effective for those features. A distributed intrusion detection approach based on timed automata is given. A cluster-based detection scheme is presented, where periodically a node is elected as the monitor node for a cluster. These monitor nodes can not only make local intrusion detection decisions, but also cooperatively take part in global intrusion detection. And then the timed automata is constructed by the way of manually abstracting the correct behaviours of the node according to the routing protocol of dynamic source routing (DSR). The monitor nodes can verify the behaviour of every nodes by timed automata, and validly detect real-time attacks without signatures of intrusion or trained data. Compared with the architecture where each node is its own IDS agent, the approach is much more efficient while maintaining the same level of effectiveness. Finally, the intrusion detection method is evaluated through simulation experiments.展开更多
Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one...Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one of the most important technologies in network security detection.The accuracy of network intrusion detection has reached higher accuracy so far.However,these methods have very low efficiency in network intrusion detection,even the most popular SOM neural network method.In this paper,an efficient and fast network intrusion detection method was proposed.Firstly,the fundamental of the two different methods are introduced respectively.Then,the selforganizing feature map neural network based on K-means clustering(KSOM)algorithms was presented to improve the efficiency of network intrusion detection.Finally,the NSLKDD is used as network intrusion data set to demonstrate that the KSOM method can significantly reduce the number of clustering iteration than SOM method without substantially affecting the clustering results and the accuracy is much higher than Kmeans method.The Experimental results show that our method can relatively improve the accuracy of network intrusion and significantly reduce the number of clustering iteration.展开更多
Intrusion detection systems(IDS)are essential in the field of cybersecurity because they protect networks from a wide range of online threats.The goal of this research is to meet the urgent need for small-footprint,hi...Intrusion detection systems(IDS)are essential in the field of cybersecurity because they protect networks from a wide range of online threats.The goal of this research is to meet the urgent need for small-footprint,highly-adaptable Network Intrusion Detection Systems(NIDS)that can identify anomalies.The NSL-KDD dataset is used in the study;it is a sizable collection comprising 43 variables with the label’s“attack”and“level.”It proposes a novel approach to intrusion detection based on the combination of channel attention and convolutional neural networks(CNN).Furthermore,this dataset makes it easier to conduct a thorough assessment of the suggested intrusion detection strategy.Furthermore,maintaining operating efficiency while improving detection accuracy is the primary goal of this work.Moreover,typical NIDS examines both risky and typical behavior using a variety of techniques.On the NSL-KDD dataset,our CNN-based approach achieves an astounding 99.728%accuracy rate when paired with channel attention.Compared to previous approaches such as ensemble learning,CNN,RBM(Boltzmann machine),ANN,hybrid auto-encoders with CNN,MCNN,and ANN,and adaptive algorithms,our solution significantly improves intrusion detection performance.Moreover,the results highlight the effectiveness of our suggested method in improving intrusion detection precision,signifying a noteworthy advancement in this field.Subsequent efforts will focus on strengthening and expanding our approach in order to counteract growing cyberthreats and adjust to changing network circumstances.展开更多
Networks provide a significant function in everyday life,and cybersecurity therefore developed a critical field of study.The Intrusion detection system(IDS)becoming an essential information protection strategy that tr...Networks provide a significant function in everyday life,and cybersecurity therefore developed a critical field of study.The Intrusion detection system(IDS)becoming an essential information protection strategy that tracks the situation of the software and hardware operating on the network.Notwithstanding advancements of growth,current intrusion detection systems also experience difficulties in enhancing detection precision,growing false alarm levels and identifying suspicious activities.In order to address above mentioned issues,several researchers concentrated on designing intrusion detection systems that rely on machine learning approaches.Machine learning models will accurately identify the underlying variations among regular information and irregular information with incredible efficiency.Artificial intelligence,particularly machine learning methods can be used to develop an intelligent intrusion detection framework.There in this article in order to achieve this objective,we propose an intrusion detection system focused on a Deep extreme learning machine(DELM)which first establishes the assessment of safety features that lead to their prominence and then constructs an adaptive intrusion detection system focusing on the important features.In the moment,we researched the viability of our suggested DELMbased intrusion detection system by conducting dataset assessments and evaluating the performance factors to validate the system reliability.The experimental results illustrate that the suggested framework outclasses traditional algorithms.In fact,the suggested framework is not only of interest to scientific research but also of functional importance.展开更多
Anomaly detection is a key element of intrusion detection systems and a necessary complement of widely used misuse intrusion detection systems. Data sources used by network intrusion detection, like network packets or...Anomaly detection is a key element of intrusion detection systems and a necessary complement of widely used misuse intrusion detection systems. Data sources used by network intrusion detection, like network packets or connections, often contain both numeric and nominal features. Both of these features contain important information for intrusion detection. These two features, on the other hand, have different characteristics. This paper presents a new network based anomaly intrusion detection approach that works well by building profiles for numeric and nominal features in different ways. During training, for each numeric feature, a normal profile is build through statistical distribution inference and parameter estimation, while for each nominal feature, a normal profile is setup through statistical method. These profiles are used as detection models during testing to judge whether a data being tested is benign or malicious. Experiments with the data set of 1999 DARPA (defense advanced research project agency) intrusion detection evaluation show that this approach can detect attacks effectively.展开更多
Due to the widespread use of the internet and smart devices,various attacks like intrusion,zero-day,Malware,and security breaches are a constant threat to any organization’s network infrastructure.Thus,a Network Intr...Due to the widespread use of the internet and smart devices,various attacks like intrusion,zero-day,Malware,and security breaches are a constant threat to any organization’s network infrastructure.Thus,a Network Intrusion Detection System(NIDS)is required to detect attacks in network traffic.This paper proposes a new hybrid method for intrusion detection and attack categorization.The proposed approach comprises three steps to address high false and low false-negative rates for intrusion detection and attack categorization.In the first step,the dataset is preprocessed through the data transformation technique and min-max method.Secondly,the random forest recursive feature elimination method is applied to identify optimal features that positively impact the model’s performance.Next,we use various Support Vector Machine(SVM)types to detect intrusion and the Adaptive Neuro-Fuzzy System(ANFIS)to categorize probe,U2R,R2U,and DDOS attacks.The validation of the proposed method is calculated through Fine Gaussian SVM(FGSVM),which is 99.3%for the binary class.Mean Square Error(MSE)is reported as 0.084964 for training data,0.0855203 for testing,and 0.084964 to validate multiclass categorization.展开更多
Networks protection against different types of attacks is one of most important posed issue into the network and information security domains. This problem on Wireless Sensor Networks (WSNs), in attention to their spe...Networks protection against different types of attacks is one of most important posed issue into the network and information security domains. This problem on Wireless Sensor Networks (WSNs), in attention to their special properties, has more importance. Now, there are some of proposed solutions to protect Wireless Sensor Networks (WSNs) against different types of intrusions;but no one of them has a comprehensive view to this problem and they are usually designed in single-purpose;but, the proposed design in this paper has been a comprehensive view to this issue by presenting a complete Intrusion Detection Architecture (IDA). The main contribution of this architecture is its hierarchical structure;i.e. it is designed and applicable, in one, two or three levels, consistent to the application domain and its required security level. Focus of this paper is on the clustering WSNs, designing and deploying Sensor-based Intrusion Detection System (SIDS) on sensor nodes, Cluster-based Intrusion Detection System (CIDS) on cluster-heads and Wireless Sensor Network wide level Intrusion Detection System (WSNIDS) on the central server. Suppositions of the WSN and Intrusion Detection Architecture (IDA) are: static and heterogeneous network, hierarchical, distributed and clustering structure along with clusters' overlapping. Finally, this paper has been designed a questionnaire to verify the proposed idea;then it analyzed and evaluated the acquired results from the questionnaires.展开更多
In this paper,we propose two intrusion detection methods which combine rough set theory and Fuzzy C-Means for network intrusion detection.The first step consists of feature selection which is based on rough set theory...In this paper,we propose two intrusion detection methods which combine rough set theory and Fuzzy C-Means for network intrusion detection.The first step consists of feature selection which is based on rough set theory.The next phase is clustering by using Fuzzy C-Means.Rough set theory is an efficient tool for further reducing redundancy.Fuzzy C-Means allows the objects to belong to several clusters simultaneously,with different degrees of membership.To evaluate the performance of the introduced approaches,we apply them to the international Knowledge Discovery and Data mining intrusion detection dataset.In the experimentations,we compare the performance of two rough set theory based hybrid methods for network intrusion detection.Experimental results illustrate that our algorithms are accurate models for handling complex attack patterns in large network.And these two methods can increase the efficiency and reduce the dataset by looking for overlapping categories.展开更多
Currently,the Internet of Things(IoT)is revolutionizing communi-cation technology by facilitating the sharing of information between different physical devices connected to a network.To improve control,customization,f...Currently,the Internet of Things(IoT)is revolutionizing communi-cation technology by facilitating the sharing of information between different physical devices connected to a network.To improve control,customization,flexibility,and reduce network maintenance costs,a new Software-Defined Network(SDN)technology must be used in this infrastructure.Despite the various advantages of combining SDN and IoT,this environment is more vulnerable to various attacks due to the centralization of control.Most methods to ensure IoT security are designed to detect Distributed Denial-of-Service(DDoS)attacks,but they often lack mechanisms to mitigate their severity.This paper proposes a Multi-Attack Intrusion Detection System(MAIDS)for Software-Defined IoT Networks(SDN-IoT).The proposed scheme uses two machine-learning algorithms to improve detection efficiency and provide a mechanism to prevent false alarms.First,a comparative analysis of the most commonly used machine-learning algorithms to secure the SDN was performed on two datasets:the Network Security Laboratory Knowledge Discovery in Databases(NSL-KDD)and the Canadian Institute for Cyberse-curity Intrusion Detection Systems(CICIDS2017),to select the most suitable algorithms for the proposed scheme and for securing SDN-IoT systems.The algorithms evaluated include Extreme Gradient Boosting(XGBoost),K-Nearest Neighbor(KNN),Random Forest(RF),Support Vector Machine(SVM),and Logistic Regression(LR).Second,an algorithm for selecting the best dataset for machine learning in Intrusion Detection Systems(IDS)was developed to enable effective comparison between the datasets used in the development of the security scheme.The results showed that XGBoost and RF are the best algorithms to ensure the security of SDN-IoT and to be applied in the proposed security system,with average accuracies of 99.88%and 99.89%,respectively.Furthermore,the proposed security scheme reduced the false alarm rate by 33.23%,which is a significant improvement over prevalent schemes.Finally,tests of the algorithm for dataset selection showed that the rates of false positives and false negatives were reduced when the XGBoost and RF algorithms were trained on the CICIDS2017 dataset,making it the best for IDS compared to the NSL-KDD dataset.展开更多
Protecting networks against different types of attacks is one of most important posed issue into the network and information security domains. This problem on Wireless Sensor Networks (WSNs), in attention to their spe...Protecting networks against different types of attacks is one of most important posed issue into the network and information security domains. This problem on Wireless Sensor Networks (WSNs), in attention to their special properties, has more importance. Now, there are some of proposed solutions to protect Wireless Sensor Networks (WSNs) against different types of intrusions;but no one of them has a comprehensive view to this problem and they are usually designed in single-purpose;but, the proposed design in this paper has been a comprehensive view to this issue by presenting a complete architecture of Intrusion Detection System (IDS). The main contribution of this architecture is its modularity and flexibility;i.e. it is designed and applicable, in four steps on intrusion detection process, consistent to the application domain and its required security level. Focus of this paper is on the heterogeneous WSNs and network-based IDS, by designing and deploying the Wireless Sensor Network wide level Intrusion Detection System (WSNIDS) on the base station (sink). Finally, this paper has been designed a questionnaire to verify its idea, by using the acquired results from analyzing the questionnaires.展开更多
In network-based intrusion detection practices,there are more regular instances than intrusion instances.Because there is always a statistical imbalance in the instances,it is difficult to train the intrusion detectio...In network-based intrusion detection practices,there are more regular instances than intrusion instances.Because there is always a statistical imbalance in the instances,it is difficult to train the intrusion detection system effectively.In this work,we compare intrusion detection performance by increasing the rarely appearing instances rather than by eliminating the frequently appearing duplicate instances.Our technique mitigates the statistical imbalance in these instances.We also carried out an experiment on the training model by increasing the instances,thereby increasing the attack instances step by step up to 13 levels.The experiments included not only known attacks,but also unknown new intrusions.The results are compared with the existing studies from the literature,and show an improvement in accuracy,sensitivity,and specificity over previous studies.The detection rates for the remote-to-user(R2L)and user-to-root(U2L)categories are improved significantly by adding fewer instances.The detection of many intrusions is increased from a very low to a very high detection rate.The detection of newer attacks that had not been used in training improved from 9%to 12%.This study has practical applications in network administration to protect from known and unknown attacks.If network administrators are running out of instances for some attacks,they can increase the number of instances with rarely appearing instances,thereby improving the detection of both known and unknown new attacks.展开更多
Cloud Computing(CC)provides data storage options as well as computing services to its users through the Internet.On the other hand,cloud users are concerned about security and privacy issues due to the increased numbe...Cloud Computing(CC)provides data storage options as well as computing services to its users through the Internet.On the other hand,cloud users are concerned about security and privacy issues due to the increased number of cyberattacks.Data protection has become an important issue since the users’information gets exposed to third parties.Computer networks are exposed to different types of attacks which have extensively grown in addition to the novel intrusion methods and hacking tools.Intrusion Detection Systems(IDSs)can be used in a network to manage suspicious activities.These IDSs monitor the activities of the CC environment and decide whether an activity is legitimate(normal)or malicious(intrusive)based on the established system’s confidentiality,availability and integrity of the data sources.In the current study,a Chaotic Metaheuristics with Optimal Multi-Spiking Neural Network-based Intrusion Detection(CMOMSNN-ID)model is proposed to secure the cloud environment.The presented CMOMSNNID model involves the Chaotic Artificial Bee Colony Optimization-based Feature Selection(CABC-FS)technique to reduce the curse of dimensionality.In addition,the Multi-Spiking Neural Network(MSNN)classifier is also used based on the simulation of brain functioning.It is applied to resolve pattern classification problems.In order to fine-tune the parameters relevant to theMSNN model,theWhale Optimization Algorithm(WOA)is employed to boost the classification results.To demonstrate the superiority of the proposed CMOMSNN-ID model,a useful set of simulations was performed.The simulation outcomes inferred that the proposed CMOMSNN-ID model accomplished a superior performance over other models with a maximum accuracy of 99.20%.展开更多
As the Internet of Things(IoT)endures to develop,a huge count of data has been created.An IoT platform is rather sensitive to security challenges as individual data can be leaked,or sensor data could be used to cause ...As the Internet of Things(IoT)endures to develop,a huge count of data has been created.An IoT platform is rather sensitive to security challenges as individual data can be leaked,or sensor data could be used to cause accidents.As typical intrusion detection system(IDS)studies can be frequently designed for working well on databases,it can be unknown if they intend to work well in altering network environments.Machine learning(ML)techniques are depicted to have a higher capacity at assisting mitigate an attack on IoT device and another edge system with reasonable accuracy.This article introduces a new Bird Swarm Algorithm with Wavelet Neural Network for Intrusion Detection(BSAWNN-ID)in the IoT platform.The main intention of the BSAWNN-ID algorithm lies in detecting and classifying intrusions in the IoT platform.The BSAWNN-ID technique primarily designs a feature subset selection using the coyote optimization algorithm(FSS-COA)to attain this.Next,to detect intrusions,the WNN model is utilized.At last,theWNNparameters are optimally modified by the use of BSA.Awidespread experiment is performed to depict the better performance of the BSAWNNID technique.The resultant values indicated the better performance of the BSAWNN-ID technique over other models,with an accuracy of 99.64%on the UNSW-NB15 dataset.展开更多
基金Princess Nourah bint Abdulrahman University for funding this project through the Researchers Supporting Project(PNURSP2024R319)funded by the Prince Sultan University,Riyadh,Saudi Arabia.
文摘This study describes improving network security by implementing and assessing an intrusion detection system(IDS)based on deep neural networks(DNNs).The paper investigates contemporary technical ways for enhancing intrusion detection performance,given the vital relevance of safeguarding computer networks against harmful activity.The DNN-based IDS is trained and validated by the model using the NSL-KDD dataset,a popular benchmark for IDS research.The model performs well in both the training and validation stages,with 91.30%training accuracy and 94.38%validation accuracy.Thus,the model shows good learning and generalization capabilities with minor losses of 0.22 in training and 0.1553 in validation.Furthermore,for both macro and micro averages across class 0(normal)and class 1(anomalous)data,the study evaluates the model using a variety of assessment measures,such as accuracy scores,precision,recall,and F1 scores.The macro-average recall is 0.9422,the macro-average precision is 0.9482,and the accuracy scores are 0.942.Furthermore,macro-averaged F1 scores of 0.9245 for class 1 and 0.9434 for class 0 demonstrate the model’s ability to precisely identify anomalies precisely.The research also highlights how real-time threat monitoring and enhanced resistance against new online attacks may be achieved byDNN-based intrusion detection systems,which can significantly improve network security.The study underscores the critical function ofDNN-based IDS in contemporary cybersecurity procedures by setting the foundation for further developments in this field.Upcoming research aims to enhance intrusion detection systems by examining cooperative learning techniques and integrating up-to-date threat knowledge.
文摘The ever-growing network traffic threat landscape necessitates adopting accurate and robust intrusion detection systems(IDSs).IDSs have become a research hotspot and have seen remarkable performance improvements.Generative adversarial networks(GANs)have also garnered increasing research interest recently due to their remarkable ability to generate data.This paper investigates the application of(GANs)in(IDS)and explores their current use within this research field.We delve into the adoption of GANs within signature-based,anomaly-based,and hybrid IDSs,focusing on their objectives,methodologies,and advantages.Overall,GANs have been widely employed,mainly focused on solving the class imbalance issue by generating realistic attack samples.While GANs have shown significant potential in addressing the class imbalance issue,there are still open opportunities and challenges to be addressed.Little attention has been paid to their applicability in distributed and decentralized domains,such as IoT networks.Efficiency and scalability have been mostly overlooked,and thus,future works must aim at addressing these gaps.
基金Supported by the National Natural Science Foundation of China (Grant No 60803002)the Excellent Young Scholars Research Fund of Beijing Institute of Technology
文摘Pattern matching is one of the most performance-critical components for the content inspection based applications of network security, such as network intrusion detection and prevention.To keep up with the increasing speed network, this component needs to be accelerated by well designed custom coprocessor.This paper presents a parameterized multilevel pattern matching architecture (MPM) which is used on FPGAs.To achieve less chip area, the architecture is designed based on the idea of selected character decoding (SCD) and multilevel method which are analyzed in detail.This paper also proposes an MPM generator that can generate RTL-level codes of MPM by giving a pattern set and predefined parameters.With the generator, the efficient MPM architecture can be generated and embedded to a total hardware solution.The third contribution is a mathematical model and formula to estimate the chip area for each MPM before it is generated, which is useful for choosing the proper type of FPGAs.One example MPM architecture is implemented by giving 1785 patterns of Snort on Xilinx Virtex 2 Pro FPGA.The results show that this MPM can achieve 4.3 Gbps throughput with 5 stages of pipelines and 0.22 slices per character, about one half chip area of the most area-efficient architecture in literature.Other results are given to show that MPM is also efficient for general random pattern sets.The performance of MPM can be scalable near linearly, potential for more than 100 Gbps throughput.
基金supported by China MOST project (No.2012BAH46B04)
文摘Pattern matching is a fundamental approach to detect malicious behaviors and information over Internet, which has been gradually used in high-speed network traffic analysis. However, there is a performance bottleneck for multi-pattern matching on online compressed network traffic(CNT), this is because malicious and intrusion codes are often embedded into compressed network traffic. In this paper, we propose an online fast and multi-pattern matching algorithm on compressed network traffic(FMMCN). FMMCN employs two types of jumping, i.e. jumping during sliding window and a string jump scanning strategy to skip unnecessary compressed bytes. Moreover, FMMCN has the ability to efficiently process multiple large volume of networks such as HTTP traffic, vehicles traffic, and other Internet-based services. The experimental results show that FMMCN can ignore more than 89.5% of bytes, and its maximum speed reaches 176.470MB/s in a midrange switches device, which is faster than the current fastest algorithm ACCH by almost 73.15 MB/s.
文摘The challenge of achieving situational understanding is a limiting factor in effective, timely, and adaptive cyber-security analysis. Anomaly detection fills a critical role in network assessment and trend analysis, both of which underlie the establishment of comprehensive situational understanding. To that end, we propose a cyber security data warehouse implemented as a hierarchical graph of aggregations that captures anomalies at multiple scales. Each node of our proposed graph is a summarization table of cyber event aggregations, and the edges are aggregation operators. The cyber security data warehouse enables domain experts to quickly traverse a multi-scale aggregation space systematically. We describe the architecture of a test bed system and a summary of results on the IEEE VAST 2012 Cyber Forensics data.
文摘A model of intelligent intrusion detection based on rough neural network (RNN), which combines the neural network and rough set, is presented. It works by capturing network packets to identify network intrusions or malicious attacks using RNN with sub-nets. The sub-net is constructed by detection-oriented signatures extracted using rough set theory to detect different intrusions. It is proved that RNN detection method has the merits of adaptive, high universality, high convergence speed, easy upgrading and management.
基金supported by National Nature Science Foundation of China (Grant No.61471182)Postgraduate Research&Practice Innovation Program of Jiangsu Province (Grant No.KYCX20_2993)Jiangsu postgraduate research innovation project (SJCX18_0784)。
文摘In this paper,we propose a intrusion detection algorithm based on auto-encoder and three-way decisions(AE-3WD)for industrial control networks,aiming at the security problem of industrial control network.The ideology of deep learning is similar to the idea of intrusion detection.Deep learning is a kind of intelligent algorithm and has the ability of automatically learning.It uses self-learning to enhance the experience and dynamic classification capabilities.We use deep learning to improve the intrusion detection rate and reduce the false alarm rate through learning,a denoising AutoEncoder and three-way decisions intrusion detection method AE-3WD is proposed to improve intrusion detection accuracy.In the processing,deep learning AutoEncoder is used to extract the features of high-dimensional data by combining the coefficient penalty and reconstruction loss function of the encode layer during the training mode.A multi-feature space can be constructed by multiple feature extractions from AutoEncoder,and then a decision for intrusion behavior or normal behavior is made by three-way decisions.NSL-KDD data sets are used to the experiments.The experiment results prove that our proposed method can extract meaningful features and effectively improve the performance of intrusion detection.
基金the National High Technology Development "863" Program of China (2006AA01Z436, 2007AA01Z452)the National Natural Science Foundation of China(60702042).
文摘Mobile ad hoc networking (MANET) has become an exciting and important technology in recent years, because of the rapid proliferation of wireless devices. Mobile ad hoc networks is highly vulnerable to attacks due to the open medium, dynamically changing network topology, cooperative algorithms, and lack of centralized monitoring and management point. The traditional way of protecting networks with firewalls and encryption software is no longer sufficient and effective for those features. A distributed intrusion detection approach based on timed automata is given. A cluster-based detection scheme is presented, where periodically a node is elected as the monitor node for a cluster. These monitor nodes can not only make local intrusion detection decisions, but also cooperatively take part in global intrusion detection. And then the timed automata is constructed by the way of manually abstracting the correct behaviours of the node according to the routing protocol of dynamic source routing (DSR). The monitor nodes can verify the behaviour of every nodes by timed automata, and validly detect real-time attacks without signatures of intrusion or trained data. Compared with the architecture where each node is its own IDS agent, the approach is much more efficient while maintaining the same level of effectiveness. Finally, the intrusion detection method is evaluated through simulation experiments.
文摘Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one of the most important technologies in network security detection.The accuracy of network intrusion detection has reached higher accuracy so far.However,these methods have very low efficiency in network intrusion detection,even the most popular SOM neural network method.In this paper,an efficient and fast network intrusion detection method was proposed.Firstly,the fundamental of the two different methods are introduced respectively.Then,the selforganizing feature map neural network based on K-means clustering(KSOM)algorithms was presented to improve the efficiency of network intrusion detection.Finally,the NSLKDD is used as network intrusion data set to demonstrate that the KSOM method can significantly reduce the number of clustering iteration than SOM method without substantially affecting the clustering results and the accuracy is much higher than Kmeans method.The Experimental results show that our method can relatively improve the accuracy of network intrusion and significantly reduce the number of clustering iteration.
基金The authors would like to thank Princess Nourah bint Abdulrahman University for funding this project through the Researchers Supporting Project(PNURSP2023R319)this research was funded by the Prince Sultan University,Riyadh,Saudi Arabia.
文摘Intrusion detection systems(IDS)are essential in the field of cybersecurity because they protect networks from a wide range of online threats.The goal of this research is to meet the urgent need for small-footprint,highly-adaptable Network Intrusion Detection Systems(NIDS)that can identify anomalies.The NSL-KDD dataset is used in the study;it is a sizable collection comprising 43 variables with the label’s“attack”and“level.”It proposes a novel approach to intrusion detection based on the combination of channel attention and convolutional neural networks(CNN).Furthermore,this dataset makes it easier to conduct a thorough assessment of the suggested intrusion detection strategy.Furthermore,maintaining operating efficiency while improving detection accuracy is the primary goal of this work.Moreover,typical NIDS examines both risky and typical behavior using a variety of techniques.On the NSL-KDD dataset,our CNN-based approach achieves an astounding 99.728%accuracy rate when paired with channel attention.Compared to previous approaches such as ensemble learning,CNN,RBM(Boltzmann machine),ANN,hybrid auto-encoders with CNN,MCNN,and ANN,and adaptive algorithms,our solution significantly improves intrusion detection performance.Moreover,the results highlight the effectiveness of our suggested method in improving intrusion detection precision,signifying a noteworthy advancement in this field.Subsequent efforts will focus on strengthening and expanding our approach in order to counteract growing cyberthreats and adjust to changing network circumstances.
基金Data and Artificial Intelligence Scientific Chair at Umm AlQura University.
文摘Networks provide a significant function in everyday life,and cybersecurity therefore developed a critical field of study.The Intrusion detection system(IDS)becoming an essential information protection strategy that tracks the situation of the software and hardware operating on the network.Notwithstanding advancements of growth,current intrusion detection systems also experience difficulties in enhancing detection precision,growing false alarm levels and identifying suspicious activities.In order to address above mentioned issues,several researchers concentrated on designing intrusion detection systems that rely on machine learning approaches.Machine learning models will accurately identify the underlying variations among regular information and irregular information with incredible efficiency.Artificial intelligence,particularly machine learning methods can be used to develop an intelligent intrusion detection framework.There in this article in order to achieve this objective,we propose an intrusion detection system focused on a Deep extreme learning machine(DELM)which first establishes the assessment of safety features that lead to their prominence and then constructs an adaptive intrusion detection system focusing on the important features.In the moment,we researched the viability of our suggested DELMbased intrusion detection system by conducting dataset assessments and evaluating the performance factors to validate the system reliability.The experimental results illustrate that the suggested framework outclasses traditional algorithms.In fact,the suggested framework is not only of interest to scientific research but also of functional importance.
基金Project supported by National Natural Science Foundation of China (Grant No .60373088) ,and National Defense Research Foun-dation of China (Grant No .4131605)
文摘Anomaly detection is a key element of intrusion detection systems and a necessary complement of widely used misuse intrusion detection systems. Data sources used by network intrusion detection, like network packets or connections, often contain both numeric and nominal features. Both of these features contain important information for intrusion detection. These two features, on the other hand, have different characteristics. This paper presents a new network based anomaly intrusion detection approach that works well by building profiles for numeric and nominal features in different ways. During training, for each numeric feature, a normal profile is build through statistical distribution inference and parameter estimation, while for each nominal feature, a normal profile is setup through statistical method. These profiles are used as detection models during testing to judge whether a data being tested is benign or malicious. Experiments with the data set of 1999 DARPA (defense advanced research project agency) intrusion detection evaluation show that this approach can detect attacks effectively.
基金The authors would like to thank the Deanship of Scientific Research at Prince Sattam bin Abdul-Aziz University,Saudi Arabia.
文摘Due to the widespread use of the internet and smart devices,various attacks like intrusion,zero-day,Malware,and security breaches are a constant threat to any organization’s network infrastructure.Thus,a Network Intrusion Detection System(NIDS)is required to detect attacks in network traffic.This paper proposes a new hybrid method for intrusion detection and attack categorization.The proposed approach comprises three steps to address high false and low false-negative rates for intrusion detection and attack categorization.In the first step,the dataset is preprocessed through the data transformation technique and min-max method.Secondly,the random forest recursive feature elimination method is applied to identify optimal features that positively impact the model’s performance.Next,we use various Support Vector Machine(SVM)types to detect intrusion and the Adaptive Neuro-Fuzzy System(ANFIS)to categorize probe,U2R,R2U,and DDOS attacks.The validation of the proposed method is calculated through Fine Gaussian SVM(FGSVM),which is 99.3%for the binary class.Mean Square Error(MSE)is reported as 0.084964 for training data,0.0855203 for testing,and 0.084964 to validate multiclass categorization.
文摘Networks protection against different types of attacks is one of most important posed issue into the network and information security domains. This problem on Wireless Sensor Networks (WSNs), in attention to their special properties, has more importance. Now, there are some of proposed solutions to protect Wireless Sensor Networks (WSNs) against different types of intrusions;but no one of them has a comprehensive view to this problem and they are usually designed in single-purpose;but, the proposed design in this paper has been a comprehensive view to this issue by presenting a complete Intrusion Detection Architecture (IDA). The main contribution of this architecture is its hierarchical structure;i.e. it is designed and applicable, in one, two or three levels, consistent to the application domain and its required security level. Focus of this paper is on the clustering WSNs, designing and deploying Sensor-based Intrusion Detection System (SIDS) on sensor nodes, Cluster-based Intrusion Detection System (CIDS) on cluster-heads and Wireless Sensor Network wide level Intrusion Detection System (WSNIDS) on the central server. Suppositions of the WSN and Intrusion Detection Architecture (IDA) are: static and heterogeneous network, hierarchical, distributed and clustering structure along with clusters' overlapping. Finally, this paper has been designed a questionnaire to verify the proposed idea;then it analyzed and evaluated the acquired results from the questionnaires.
基金Sponsored by the National Social Science Fund(Grant No.13CFX049)the Shanghai University Young Teacher Training Program(Grant No.hdzf10008)the Research Fund for East China University of Political Science and Law(Grant No.11H2K034)
文摘In this paper,we propose two intrusion detection methods which combine rough set theory and Fuzzy C-Means for network intrusion detection.The first step consists of feature selection which is based on rough set theory.The next phase is clustering by using Fuzzy C-Means.Rough set theory is an efficient tool for further reducing redundancy.Fuzzy C-Means allows the objects to belong to several clusters simultaneously,with different degrees of membership.To evaluate the performance of the introduced approaches,we apply them to the international Knowledge Discovery and Data mining intrusion detection dataset.In the experimentations,we compare the performance of two rough set theory based hybrid methods for network intrusion detection.Experimental results illustrate that our algorithms are accurate models for handling complex attack patterns in large network.And these two methods can increase the efficiency and reduce the dataset by looking for overlapping categories.
文摘Currently,the Internet of Things(IoT)is revolutionizing communi-cation technology by facilitating the sharing of information between different physical devices connected to a network.To improve control,customization,flexibility,and reduce network maintenance costs,a new Software-Defined Network(SDN)technology must be used in this infrastructure.Despite the various advantages of combining SDN and IoT,this environment is more vulnerable to various attacks due to the centralization of control.Most methods to ensure IoT security are designed to detect Distributed Denial-of-Service(DDoS)attacks,but they often lack mechanisms to mitigate their severity.This paper proposes a Multi-Attack Intrusion Detection System(MAIDS)for Software-Defined IoT Networks(SDN-IoT).The proposed scheme uses two machine-learning algorithms to improve detection efficiency and provide a mechanism to prevent false alarms.First,a comparative analysis of the most commonly used machine-learning algorithms to secure the SDN was performed on two datasets:the Network Security Laboratory Knowledge Discovery in Databases(NSL-KDD)and the Canadian Institute for Cyberse-curity Intrusion Detection Systems(CICIDS2017),to select the most suitable algorithms for the proposed scheme and for securing SDN-IoT systems.The algorithms evaluated include Extreme Gradient Boosting(XGBoost),K-Nearest Neighbor(KNN),Random Forest(RF),Support Vector Machine(SVM),and Logistic Regression(LR).Second,an algorithm for selecting the best dataset for machine learning in Intrusion Detection Systems(IDS)was developed to enable effective comparison between the datasets used in the development of the security scheme.The results showed that XGBoost and RF are the best algorithms to ensure the security of SDN-IoT and to be applied in the proposed security system,with average accuracies of 99.88%and 99.89%,respectively.Furthermore,the proposed security scheme reduced the false alarm rate by 33.23%,which is a significant improvement over prevalent schemes.Finally,tests of the algorithm for dataset selection showed that the rates of false positives and false negatives were reduced when the XGBoost and RF algorithms were trained on the CICIDS2017 dataset,making it the best for IDS compared to the NSL-KDD dataset.
文摘Protecting networks against different types of attacks is one of most important posed issue into the network and information security domains. This problem on Wireless Sensor Networks (WSNs), in attention to their special properties, has more importance. Now, there are some of proposed solutions to protect Wireless Sensor Networks (WSNs) against different types of intrusions;but no one of them has a comprehensive view to this problem and they are usually designed in single-purpose;but, the proposed design in this paper has been a comprehensive view to this issue by presenting a complete architecture of Intrusion Detection System (IDS). The main contribution of this architecture is its modularity and flexibility;i.e. it is designed and applicable, in four steps on intrusion detection process, consistent to the application domain and its required security level. Focus of this paper is on the heterogeneous WSNs and network-based IDS, by designing and deploying the Wireless Sensor Network wide level Intrusion Detection System (WSNIDS) on the base station (sink). Finally, this paper has been designed a questionnaire to verify its idea, by using the acquired results from analyzing the questionnaires.
基金the Institute for Information and Communications Technology Planning and Evaluation(IITP)funded by the Korea Government(MSIT)under Grant 20190007960022002(2020000000110).
文摘In network-based intrusion detection practices,there are more regular instances than intrusion instances.Because there is always a statistical imbalance in the instances,it is difficult to train the intrusion detection system effectively.In this work,we compare intrusion detection performance by increasing the rarely appearing instances rather than by eliminating the frequently appearing duplicate instances.Our technique mitigates the statistical imbalance in these instances.We also carried out an experiment on the training model by increasing the instances,thereby increasing the attack instances step by step up to 13 levels.The experiments included not only known attacks,but also unknown new intrusions.The results are compared with the existing studies from the literature,and show an improvement in accuracy,sensitivity,and specificity over previous studies.The detection rates for the remote-to-user(R2L)and user-to-root(U2L)categories are improved significantly by adding fewer instances.The detection of many intrusions is increased from a very low to a very high detection rate.The detection of newer attacks that had not been used in training improved from 9%to 12%.This study has practical applications in network administration to protect from known and unknown attacks.If network administrators are running out of instances for some attacks,they can increase the number of instances with rarely appearing instances,thereby improving the detection of both known and unknown new attacks.
基金This research work was funded by Institutional Fund Projects under Grant No.(IFPHI-099-120-2020)..
文摘Cloud Computing(CC)provides data storage options as well as computing services to its users through the Internet.On the other hand,cloud users are concerned about security and privacy issues due to the increased number of cyberattacks.Data protection has become an important issue since the users’information gets exposed to third parties.Computer networks are exposed to different types of attacks which have extensively grown in addition to the novel intrusion methods and hacking tools.Intrusion Detection Systems(IDSs)can be used in a network to manage suspicious activities.These IDSs monitor the activities of the CC environment and decide whether an activity is legitimate(normal)or malicious(intrusive)based on the established system’s confidentiality,availability and integrity of the data sources.In the current study,a Chaotic Metaheuristics with Optimal Multi-Spiking Neural Network-based Intrusion Detection(CMOMSNN-ID)model is proposed to secure the cloud environment.The presented CMOMSNNID model involves the Chaotic Artificial Bee Colony Optimization-based Feature Selection(CABC-FS)technique to reduce the curse of dimensionality.In addition,the Multi-Spiking Neural Network(MSNN)classifier is also used based on the simulation of brain functioning.It is applied to resolve pattern classification problems.In order to fine-tune the parameters relevant to theMSNN model,theWhale Optimization Algorithm(WOA)is employed to boost the classification results.To demonstrate the superiority of the proposed CMOMSNN-ID model,a useful set of simulations was performed.The simulation outcomes inferred that the proposed CMOMSNN-ID model accomplished a superior performance over other models with a maximum accuracy of 99.20%.
基金This work was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University,through the Research Groups Program Grant No.(RGP-1443-0048).
文摘As the Internet of Things(IoT)endures to develop,a huge count of data has been created.An IoT platform is rather sensitive to security challenges as individual data can be leaked,or sensor data could be used to cause accidents.As typical intrusion detection system(IDS)studies can be frequently designed for working well on databases,it can be unknown if they intend to work well in altering network environments.Machine learning(ML)techniques are depicted to have a higher capacity at assisting mitigate an attack on IoT device and another edge system with reasonable accuracy.This article introduces a new Bird Swarm Algorithm with Wavelet Neural Network for Intrusion Detection(BSAWNN-ID)in the IoT platform.The main intention of the BSAWNN-ID algorithm lies in detecting and classifying intrusions in the IoT platform.The BSAWNN-ID technique primarily designs a feature subset selection using the coyote optimization algorithm(FSS-COA)to attain this.Next,to detect intrusions,the WNN model is utilized.At last,theWNNparameters are optimally modified by the use of BSA.Awidespread experiment is performed to depict the better performance of the BSAWNNID technique.The resultant values indicated the better performance of the BSAWNN-ID technique over other models,with an accuracy of 99.64%on the UNSW-NB15 dataset.