It has been well known for many years that males of Luciola parvula (Coleoptera, Lampyridae) have two morphs, namely small and large morphs in Japan. This article performed a statistical reanalysis of their morphologi...It has been well known for many years that males of Luciola parvula (Coleoptera, Lampyridae) have two morphs, namely small and large morphs in Japan. This article performed a statistical reanalysis of their morphological measurements based on previously published data and compared them. As a result, the two morphs were found to have different allometric patterns in the Hakone and Nagano areas, Japan. In Hakone, the relationships between their pronotum width and length were expressed by a common allometric line and a shift in location along the line. However, in Nagano, the relationships between their pronotum width and body length were expressed by two parallel allometric lines (a common slope and different intercepts). The allometric pattern of males of this species may vary among different parts of the body or among different areas. Therefore, this article recommends future studies to measure the same parts of the body as previous studies to clarify geographic variation in allometric relationships.展开更多
To compute transonic flows over a complex 3D aircraft configuration, a viscous/inviscid interaction method is developed by coupling an integral boundary-layer solver with an Eluer solver in a "semi-inverse" manner. ...To compute transonic flows over a complex 3D aircraft configuration, a viscous/inviscid interaction method is developed by coupling an integral boundary-layer solver with an Eluer solver in a "semi-inverse" manner. For the turbulent boundary-layer, an integral method using Green's lag equation is coupled with the outer inviscid flow. A blowing velocity approach is used to simulate the displacement effects of the boundary layer. To predict the aerodynamic drag, it is developed a numerical technique called far-field method that is based on the momentum theorem, in which the total drag is divided into three component drags, i.e. viscous, induced and wave-formed. Consequently, it can provide more physical insight into the drag sources than the often-used surface integral technique. The drag decomposition can be achieved with help of the second law of thermodynamics, which implies that entropy increases and total pressure decreases only across shock wave along a streamline of an inviscid non-isentropic flow. This method has been applied to the DLR-F4 wing/body configuration showing results in good agreement with the wind tunnel data.展开更多
Synthetic analysis is conducted to the wind tunnel experiment results of zero lift drag coefficient and lift coefficient for large aspect ratio winged rigid body.By means of wind tunnel experiment data,the dynamics mo...Synthetic analysis is conducted to the wind tunnel experiment results of zero lift drag coefficient and lift coefficient for large aspect ratio winged rigid body.By means of wind tunnel experiment data,the dynamics model of the zero lift drag coefficient and lift coefficient for the large aspect ratio winged rigid body is amended.The research indicates that the change trends of zero lift drag coefficient and lift coefficient to Mach number are similar.The calculation result and wind tunnel experiment data all verify the validity of the amended dynamics model by which to estimate the zero lift drag coefficient and lift coefficient for the large aspect ratio winged rigid body,and thus providing some technical reference to aerodynamics character analysis of the same types of winged rigid body.展开更多
The aerodynamic interaction between the contralateral wings and between the body and wings of a model insect are studied, by using the method of numerically solving the Navier-Stokes equations over moving overset grid...The aerodynamic interaction between the contralateral wings and between the body and wings of a model insect are studied, by using the method of numerically solving the Navier-Stokes equations over moving overset grids, under typical hovering and forward flight conditions. Both the interaction between the contralateral wings and the interaction between the body and wings are very weak, e.g. at hovering, changes in aerodynamic forces of a wing due to the present of the other wing are less than 3% and changes in aerodynamic forces of the wings due to presence of the body are less than 2%. The reason for this is as following. During each down- or up-stroke, a wing produces a vortex ring, which induces a relatively large jet-like flow inside the ring but very small flow outside the ring. The vortex rings of the left and right wings are on the two sides of the body. Thus one wing is outside vortex ring of the other wing and the body is outside the vortex rings of the left and right wings, resulting in the weak interactions.展开更多
Landscape spatial pattern mainly refers to the distribution of patches, which are different in size and shape in space owing to the interaction of various ecological activities. In landscape ecology study, landscape p...Landscape spatial pattern mainly refers to the distribution of patches, which are different in size and shape in space owing to the interaction of various ecological activities. In landscape ecology study, landscape pattern has been one of the key study areas. Water body landscape plays an important role in the development history of a city, but at present city water body landscape in many cities has been destroyed, hence protecting water body in the city is becoming more and more important. In order to protect city water body landscape reasonably, the precondition is to probe the dynamics of water body landscape. Based on historical data and remote sensing data, six indexes including patch number, patch area, landscape dominance index, fractal dimension, patch density and connectivity index etc. were used to analyze landscape pattern dynamics of water body in Kaifeng city since the end of the Qing Dynasty (in the 20th century). The results showed: (1) Since the end of the Qing Dynasty, landscape area of water body in Kaifeng city increased first and then decreased from 1898 to 2002AD; the landscape dominant degree had the same changing tendency with the area. (2) Patch number of water body landscape in Kaifeng city had an increase from 1898 to 2002, but maximum area of patch, minimum area of patch and average area of patch decreased, which resulted in an increase in landscape fragment degree. (3) Connectivity index decreased and fractal dimension increased from 1898 to 2002. The reasons for these changes were the repeated overflows and flooding of the Yellow River and the influence of human activities.展开更多
Background: Geographic variation in body size is assumed to reflect adaptation to local environmental conditions. Although Bergmann's rule is usually sufficient to explain such variation in homeotherms, some excep...Background: Geographic variation in body size is assumed to reflect adaptation to local environmental conditions. Although Bergmann's rule is usually sufficient to explain such variation in homeotherms, some exceptions have been documented. The relationship between altitude, latitude and body size, has been well documented for some vertebrate taxa during the past decades. However, relatively little information is available on the effects of climate variables on body size in birds.Methods: We collected the data of 267 adult Eurasian Tree Sparrow(Passer montanus) specimens sampled at 48 localities in China's mainland, and further investigated the relationships between two response variables, body mass and wing length, as well as a suit of explanatory variables, i.e. altitude, latitude, mean annual temperature(MAT), annual precipitation(PRC), annual sunshine hours(SUN), average annual wind speed(WS), air pressure(AP) and relative humidity(RH).Results: Our study showed that(1) although the sexes did not differ significantly in body mass, males had longer wings than females;(2) body mass and wing length were positively correlated with altitude but not with latitude;(3) body mass and wing length were negatively correlated with AP and RH, but not significantly correlated with WS. Body mass was positively correlated with SUN and inversely correlated with MAT. Wing length was not correlated with MAT in either sex, but was positively correlated with SUN and negatively correlated with PRC in male sparrows;(4) variation in body mass could be best explained by AP and SUN, whereas variation in wing length could be explained by RH and AP in both sexes. In addition, variation in male sparrows can be explained by SUN, WS and PRC but not in females.Conclusions: Two different proxies of body size, body mass and wing length, correlated with same geographic factors and different climate factors. These differences may reflect selection for heat conservation in the case of body mass, and for efficient flight in the case of wing length.展开更多
In the paper, we present a detailed analysis of the takeoff mechanics of fruitflies which perform voluntary takeoff flights. Wing and body kinematics of the insects during takeoff were measured using Based on the meas...In the paper, we present a detailed analysis of the takeoff mechanics of fruitflies which perform voluntary takeoff flights. Wing and body kinematics of the insects during takeoff were measured using Based on the measured data, high-speed video techniques. inertia force acting on the insect was computed and aerodynamic force and moment of the wings were calculated by the method of computational fluid dynamics. Subtracting the aerodynamic force and the weight from the inertia force gave the leg force. The following has been shown. In its voluntary takeoff, a fruitfly jumps during the first wingbeat and becomes airborne at the end of the first wingbeat. When it is in the air, the fly has a relatively large "initial" pitch-up rotational velocity (more than 5 000~/s) resulting from the jumping, but in about 5 wingbeats, the pitch-up rotation is stopped and the fly goes into a quasi-hovering flight. The fly mainly uses the force of jumping legs to lift itself into the air (the force from the flapping wings during the jumping is only about 5%-10% of the leg force). The main role played by the flapping wings in the takeoff is to produce a pitch-down moment to nullify the large "initial" pitch-up rotational velocity (otherwise, the fly would have kept pitching-up and quickly fallen down).展开更多
The brown planthopper, Nilaparvata lugens is an economically important pest on rice plants. This species produces macropterous and brachypterous morphs in response to environmental cues, which makes it very dififcult ...The brown planthopper, Nilaparvata lugens is an economically important pest on rice plants. This species produces macropterous and brachypterous morphs in response to environmental cues, which makes it very dififcult to control. The molecular basis of wing patterning in N. lugens is stil unknown. It is necessary to identify wing patterning genes of N. lugens, and also to clarify the expression differences of wing patterning genes between macropterous and brachypter-ous morphs. High-throughput deep sequencing of transcriptome of N. lugens wing pad yielded 116 744 580 raw reads and 113 042 700 clean reads. Al the reads were assembled into 55 963 unigenes with an average length of 804 bp. With the E-value cut-off of 1.0E–5,18 359 and 2 883 unigens had hits in NCBI-NR (NCBI non-redundant protein sequences) and NCBI-NT (NCBI nucleotide sequences) databases, respectively. A total of 16 502 unigenes were assigned to GO (gene ontology) classiifcation, 9 709 ungenes were grouped into 26 COG (cluster of orthologous groups of proteins) classiifcations, and 6 724 unigenes were assigned to different KEGG (Kyoto encyclopedia of genes and genomes) path-ways. In total, 56 unigenes which are homologous to wing patterning genes of Drosophila melanogaster or Tribolium castaneum were identiifed. Out of the 56 unigenes, 24 unigenes were selected, and their expression levels across the ifve nymphal stages between macropterous strain and brachypterous strain were examined by qRT-PCR. Two-way ANOVA analysis showed that development stage had signiifcant effects on the expression level of al the 24 genes (P<0.05). The expression levels of 8 genes (Nlen, Nlhh, Nlsal, NlAbd-A, Nlwg, Nlvg, Nlexd and NlUbx) were signiifcantly affected by wing morph. This is the ifrst transcriptome analysis of wing pads of hemimetabolous insect, N. lugens. The identiifed wing patterning genes would be useful resource for future exploration of molecular basis of wing development. The 8 differential y expressed wing patterning genes between macropterous strain and brachypterous strain would contribute to explain molecular mechanism of wing-morph differentiation in N. lugens.展开更多
In order to determine the planar and volume distribution of sand bodies of the Jurassic Badaowan formation in Block T13 of Junggar basin,we used analysis of field outcrop and 3D seismic data,which play an essential ro...In order to determine the planar and volume distribution of sand bodies of the Jurassic Badaowan formation in Block T13 of Junggar basin,we used analysis of field outcrop and 3D seismic data,which play an essential role in areas of sparse well coverage.We describe sedimentary facies characteristics,sand body planforms,width and connectivity patterns of sand bodies,and vertical associations and successions by acoustic impedance inversion technology and sedimentological theory.Results of our study show braided fluvial strata deposits in the Jurassic Badaowan formation.Each sand body is approximately lenticular in shape.The width of each sand body falls in the range 100~800 m,with most between 200 and 400 m.The sand bodies vary in thickness from 4 to 13 m,with most below 9 m.The width/thickness ratios lie in the range 20~55.The connectivity of braided fluvial channel sand bodies is controlled by changes of accommodation space.One fining-upward sedimentary cycle of base-level rise is recognized in Badaowan formation,representing an upward rise of base level.The connectivity of sand bodies was found to be greatest in the early stage of base-level rise,becoming progressively worse with increasing base-level rise.展开更多
The knowledge of wing orientation and deformation during flapping flight is necessary for a complete aerodynamic analysis, but to date those kinematic features have not been simultaneously quantified for free-flying i...The knowledge of wing orientation and deformation during flapping flight is necessary for a complete aerodynamic analysis, but to date those kinematic features have not been simultaneously quantified for free-flying insects. A projected comb-fringe (PCF) method has been developed for measuring spanwise camber changes on free-flying dragonflies and on beating-flying dragonflies through the course of a wingbeat, which bases on projecting a fringe pattern over the whole measurement area and then measuring the wing deformation from the distorted fringe pattern. Experimental results demonstrate substantial camber changes both along the wingspan and through the course of a wingbeat. The ratio of camber deformation to chord length for hind wing is up to 0.11 at 75% spanwise with a flapping angle of -0.66 degree for a free-flying dragonfly.展开更多
Identifying patterns,recognition systems,prediction methods,and detection methods is a major challenge in solving different medical issues.Few categories of devices for personal and professional assessment of body com...Identifying patterns,recognition systems,prediction methods,and detection methods is a major challenge in solving different medical issues.Few categories of devices for personal and professional assessment of body composition are available.Bioelectrical impedance analyzer is a simple,safe,affordable,mobile,non-invasive,and less expensive alternative device for body composition assessment.Identifying the body composition pattern of different groups with varying age and gender is a major challenge in defining an optimal level because of the body shape,body mass,energy requirements,physical fitness,health status,and metabolic profile.Thus,this research aims to identify the statistical medical pattern recognition of body composition data by using a bioelectrical impedance analyzer.In previous studies,a pattern was identified for four indicators that concern body composition(e.g.,body mass index(BMI),body fat,muscle mass,and total body water).The novelty of our study is the fact that we identified a recognition pattern by using medical statistical methods for a body composition that contains seven indicators(e.g.,body fat,visceral fat,BMI,muscle mass,skeletal muscle mass,sarcopenic index,and total body water).The youth that exhibited the body composition pattern identified in our study could be considered healthy.Every deviation of one or more parameters outside the margins of the pattern for body composition could be associated with health issues,and more medical investigations would be needed for a diagnosis.BIA is considered a valid and reliable device to assess body composition along with medical statistical methods to identify a pattern for body composition according to the age,gender,and other relevant parameters.展开更多
Objective: The goal of this study was to identify commonly consumed grain food patterns in US adults (≥19 years old;N = 14,384) and compare nutrient intakes, with focus on 2015-2020 Dietary Guidelines’ shortfall nut...Objective: The goal of this study was to identify commonly consumed grain food patterns in US adults (≥19 years old;N = 14,384) and compare nutrient intakes, with focus on 2015-2020 Dietary Guidelines’ shortfall nutrients, diet quality, and health parameters of those consuming various grain food patterns to those not consuming grains. Methods: This study conducted secondary analyses of the National Health and Nutrition Examination Survey, 2005-2010. Cluster analysis was used and identified 8 grain patterns: 1) no consumption of main grain groups, 2) crackers and salty snacks, 3) yeast breads and rolls, 4) cakes, cookies, and pies, 5) cereals, 6) pasta, cooked cereals and rice, 7) quick breads, and 8) mixed grains. Results: Adults consuming “cereals”, “pasta, cooked cereals and rice”, and “mixed grains” had a better diet quality compared to no grains. Consuming many, but not all, of the grain food patterns resulted in less saturated fat and lower added sugars. Adults consuming “cereals”, “pasta, cooked cereals and rice” and “quick breads” had greater dietary fiber intake vs. no grains group. Calcium intake was increased in the cereals group, while magnesium intake was greater in adults consuming “cereals” and “pasta, cooked cereals and rice” vs. no grains. Vitamin D (D2 + D3) intake was higher in adults consuming “cereals”, “pasta, cooked cereals and rice”, and “mixed grains” vs. no grain group. Adults consuming “pasta, cooked cereals and rice” had lower body weights (79.1 ± 0.7 vs. 82.5 ± 1.2 kg;P = 0.009) and waist circumference (95.2 ± 0.6 vs. 98.2 ± 1.0 cm;P = 0.004) in comparison to those consuming no grains. Conclusions: Certain grain food patterns are associated with greater 2015-2020 Dietary Guidelines’ shortfall nutrients, better diet quality and lower body weights in adults. Additionally, certain grain food patterns are associated with lower intake of nutrients to limit, including saturated fat and added sugars.展开更多
The lady beetle Coleomegilla maculata is a common New World insect that is naturally colored pink to red or orange with black spots on the forewings of the adult stage. Previous laboratory in-breeding resulted in sele...The lady beetle Coleomegilla maculata is a common New World insect that is naturally colored pink to red or orange with black spots on the forewings of the adult stage. Previous laboratory in-breeding resulted in selection for a strain lacking red pigment in the cuticle and eyes. An additional strain selected for a novel spotting pattern is described here. The inheritance of the new trait, “ten spotted” (10sp), was determined by classical crossing experiments. Inheritance of the trait was autosomal and exhibited incomplete dominance. Bionomic strain measurements were compared to the parental strains and were similar overall. Two expressed sequences from C. maculata that may be related to the new phenotype were compared to model insect genes encoding a melanin biosynthesis enzyme and a patterning transcription factor.展开更多
The experiments on wing-body junction and wake flow were carried cul in alow-turbulence level wind tunnel. Intensive measurements of various flow parameters,such as the distributions of the pressure on the surfaces of...The experiments on wing-body junction and wake flow were carried cul in alow-turbulence level wind tunnel. Intensive measurements of various flow parameters,such as the distributions of the pressure on the surfaces of the airfoil and the plate wall,the mean and the fluctuating velocities, as well as the turbulent kinetic energy, u'v' andu'w'etc., were performed. The results indicate that the secondary flow entrains the highvelocity low-turbulence fluid into the boundary layer and the wake vortex dominates thewake flow. Some regions of negative eddy viscosity are also found in the wake flow.展开更多
Wing-body junction turbulence flow is simulated by using RANS equation and boundary fitted coordinate technique. Three order differential scheme is used in the computation of convection term and two layers turbulence ...Wing-body junction turbulence flow is simulated by using RANS equation and boundary fitted coordinate technique. Three order differential scheme is used in the computation of convection term and two layers turbulence model are employed in the calculation.展开更多
A rapid method of the trim drag prediction for the blended-wing-body unmanned aerial vehicle(UAV)configuration is proposed.The method consists of four steps.The first step is to parameterizedly model the blended-wing-...A rapid method of the trim drag prediction for the blended-wing-body unmanned aerial vehicle(UAV)configuration is proposed.The method consists of four steps.The first step is to parameterizedly model the blended-wing-body UAV configuration;the second is to analyze the aerodynamics of the geometric model;the third is to create aerodynamic surrogate model;and the final step is to predict the trim drag using the surrogate model.Hence,a tool for trim drag prediction is developed by integration of the four steps.The impacts of the allocation of control surfaces,position of gravity center and planform parameters on the trim drag are investigated by using the tool.Results show that using the control surface in outer wing for trim has an advantage of lower trim drag,and the position of gravity center has a primary impact on the trim drag.Moreover,the planform has secondary impacts on the trim drag.展开更多
文摘It has been well known for many years that males of Luciola parvula (Coleoptera, Lampyridae) have two morphs, namely small and large morphs in Japan. This article performed a statistical reanalysis of their morphological measurements based on previously published data and compared them. As a result, the two morphs were found to have different allometric patterns in the Hakone and Nagano areas, Japan. In Hakone, the relationships between their pronotum width and length were expressed by a common allometric line and a shift in location along the line. However, in Nagano, the relationships between their pronotum width and body length were expressed by two parallel allometric lines (a common slope and different intercepts). The allometric pattern of males of this species may vary among different parts of the body or among different areas. Therefore, this article recommends future studies to measure the same parts of the body as previous studies to clarify geographic variation in allometric relationships.
文摘To compute transonic flows over a complex 3D aircraft configuration, a viscous/inviscid interaction method is developed by coupling an integral boundary-layer solver with an Eluer solver in a "semi-inverse" manner. For the turbulent boundary-layer, an integral method using Green's lag equation is coupled with the outer inviscid flow. A blowing velocity approach is used to simulate the displacement effects of the boundary layer. To predict the aerodynamic drag, it is developed a numerical technique called far-field method that is based on the momentum theorem, in which the total drag is divided into three component drags, i.e. viscous, induced and wave-formed. Consequently, it can provide more physical insight into the drag sources than the often-used surface integral technique. The drag decomposition can be achieved with help of the second law of thermodynamics, which implies that entropy increases and total pressure decreases only across shock wave along a streamline of an inviscid non-isentropic flow. This method has been applied to the DLR-F4 wing/body configuration showing results in good agreement with the wind tunnel data.
文摘Synthetic analysis is conducted to the wind tunnel experiment results of zero lift drag coefficient and lift coefficient for large aspect ratio winged rigid body.By means of wind tunnel experiment data,the dynamics model of the zero lift drag coefficient and lift coefficient for the large aspect ratio winged rigid body is amended.The research indicates that the change trends of zero lift drag coefficient and lift coefficient to Mach number are similar.The calculation result and wind tunnel experiment data all verify the validity of the amended dynamics model by which to estimate the zero lift drag coefficient and lift coefficient for the large aspect ratio winged rigid body,and thus providing some technical reference to aerodynamics character analysis of the same types of winged rigid body.
基金supported by the National Natural Science Foundation of China(10732030)the 111 Project (B 07009)
文摘The aerodynamic interaction between the contralateral wings and between the body and wings of a model insect are studied, by using the method of numerically solving the Navier-Stokes equations over moving overset grids, under typical hovering and forward flight conditions. Both the interaction between the contralateral wings and the interaction between the body and wings are very weak, e.g. at hovering, changes in aerodynamic forces of a wing due to the present of the other wing are less than 3% and changes in aerodynamic forces of the wings due to presence of the body are less than 2%. The reason for this is as following. During each down- or up-stroke, a wing produces a vortex ring, which induces a relatively large jet-like flow inside the ring but very small flow outside the ring. The vortex rings of the left and right wings are on the two sides of the body. Thus one wing is outside vortex ring of the other wing and the body is outside the vortex rings of the left and right wings, resulting in the weak interactions.
文摘Landscape spatial pattern mainly refers to the distribution of patches, which are different in size and shape in space owing to the interaction of various ecological activities. In landscape ecology study, landscape pattern has been one of the key study areas. Water body landscape plays an important role in the development history of a city, but at present city water body landscape in many cities has been destroyed, hence protecting water body in the city is becoming more and more important. In order to protect city water body landscape reasonably, the precondition is to probe the dynamics of water body landscape. Based on historical data and remote sensing data, six indexes including patch number, patch area, landscape dominance index, fractal dimension, patch density and connectivity index etc. were used to analyze landscape pattern dynamics of water body in Kaifeng city since the end of the Qing Dynasty (in the 20th century). The results showed: (1) Since the end of the Qing Dynasty, landscape area of water body in Kaifeng city increased first and then decreased from 1898 to 2002AD; the landscape dominant degree had the same changing tendency with the area. (2) Patch number of water body landscape in Kaifeng city had an increase from 1898 to 2002, but maximum area of patch, minimum area of patch and average area of patch decreased, which resulted in an increase in landscape fragment degree. (3) Connectivity index decreased and fractal dimension increased from 1898 to 2002. The reasons for these changes were the repeated overflows and flooding of the Yellow River and the influence of human activities.
基金supported by grants from the National Natural Science Foundation of China (NSFC, 31330073, 31672292)the Natural Science Foundation of the Department of Education, Hebei Province (YQ2014024)
文摘Background: Geographic variation in body size is assumed to reflect adaptation to local environmental conditions. Although Bergmann's rule is usually sufficient to explain such variation in homeotherms, some exceptions have been documented. The relationship between altitude, latitude and body size, has been well documented for some vertebrate taxa during the past decades. However, relatively little information is available on the effects of climate variables on body size in birds.Methods: We collected the data of 267 adult Eurasian Tree Sparrow(Passer montanus) specimens sampled at 48 localities in China's mainland, and further investigated the relationships between two response variables, body mass and wing length, as well as a suit of explanatory variables, i.e. altitude, latitude, mean annual temperature(MAT), annual precipitation(PRC), annual sunshine hours(SUN), average annual wind speed(WS), air pressure(AP) and relative humidity(RH).Results: Our study showed that(1) although the sexes did not differ significantly in body mass, males had longer wings than females;(2) body mass and wing length were positively correlated with altitude but not with latitude;(3) body mass and wing length were negatively correlated with AP and RH, but not significantly correlated with WS. Body mass was positively correlated with SUN and inversely correlated with MAT. Wing length was not correlated with MAT in either sex, but was positively correlated with SUN and negatively correlated with PRC in male sparrows;(4) variation in body mass could be best explained by AP and SUN, whereas variation in wing length could be explained by RH and AP in both sexes. In addition, variation in male sparrows can be explained by SUN, WS and PRC but not in females.Conclusions: Two different proxies of body size, body mass and wing length, correlated with same geographic factors and different climate factors. These differences may reflect selection for heat conservation in the case of body mass, and for efficient flight in the case of wing length.
基金supported by the National Natural Science Foundation of China(11232002)the 111 Project(B07009)
文摘In the paper, we present a detailed analysis of the takeoff mechanics of fruitflies which perform voluntary takeoff flights. Wing and body kinematics of the insects during takeoff were measured using Based on the measured data, high-speed video techniques. inertia force acting on the insect was computed and aerodynamic force and moment of the wings were calculated by the method of computational fluid dynamics. Subtracting the aerodynamic force and the weight from the inertia force gave the leg force. The following has been shown. In its voluntary takeoff, a fruitfly jumps during the first wingbeat and becomes airborne at the end of the first wingbeat. When it is in the air, the fly has a relatively large "initial" pitch-up rotational velocity (more than 5 000~/s) resulting from the jumping, but in about 5 wingbeats, the pitch-up rotation is stopped and the fly goes into a quasi-hovering flight. The fly mainly uses the force of jumping legs to lift itself into the air (the force from the flapping wings during the jumping is only about 5%-10% of the leg force). The main role played by the flapping wings in the takeoff is to produce a pitch-down moment to nullify the large "initial" pitch-up rotational velocity (otherwise, the fly would have kept pitching-up and quickly fallen down).
基金supported by the National Natural Science Foundation of China (31171846)
文摘The brown planthopper, Nilaparvata lugens is an economically important pest on rice plants. This species produces macropterous and brachypterous morphs in response to environmental cues, which makes it very dififcult to control. The molecular basis of wing patterning in N. lugens is stil unknown. It is necessary to identify wing patterning genes of N. lugens, and also to clarify the expression differences of wing patterning genes between macropterous and brachypter-ous morphs. High-throughput deep sequencing of transcriptome of N. lugens wing pad yielded 116 744 580 raw reads and 113 042 700 clean reads. Al the reads were assembled into 55 963 unigenes with an average length of 804 bp. With the E-value cut-off of 1.0E–5,18 359 and 2 883 unigens had hits in NCBI-NR (NCBI non-redundant protein sequences) and NCBI-NT (NCBI nucleotide sequences) databases, respectively. A total of 16 502 unigenes were assigned to GO (gene ontology) classiifcation, 9 709 ungenes were grouped into 26 COG (cluster of orthologous groups of proteins) classiifcations, and 6 724 unigenes were assigned to different KEGG (Kyoto encyclopedia of genes and genomes) path-ways. In total, 56 unigenes which are homologous to wing patterning genes of Drosophila melanogaster or Tribolium castaneum were identiifed. Out of the 56 unigenes, 24 unigenes were selected, and their expression levels across the ifve nymphal stages between macropterous strain and brachypterous strain were examined by qRT-PCR. Two-way ANOVA analysis showed that development stage had signiifcant effects on the expression level of al the 24 genes (P<0.05). The expression levels of 8 genes (Nlen, Nlhh, Nlsal, NlAbd-A, Nlwg, Nlvg, Nlexd and NlUbx) were signiifcantly affected by wing morph. This is the ifrst transcriptome analysis of wing pads of hemimetabolous insect, N. lugens. The identiifed wing patterning genes would be useful resource for future exploration of molecular basis of wing development. The 8 differential y expressed wing patterning genes between macropterous strain and brachypterous strain would contribute to explain molecular mechanism of wing-morph differentiation in N. lugens.
基金Financial support for this work,provided by the National Basic Research Program of China(No.2006 CB202300),
文摘In order to determine the planar and volume distribution of sand bodies of the Jurassic Badaowan formation in Block T13 of Junggar basin,we used analysis of field outcrop and 3D seismic data,which play an essential role in areas of sparse well coverage.We describe sedimentary facies characteristics,sand body planforms,width and connectivity patterns of sand bodies,and vertical associations and successions by acoustic impedance inversion technology and sedimentological theory.Results of our study show braided fluvial strata deposits in the Jurassic Badaowan formation.Each sand body is approximately lenticular in shape.The width of each sand body falls in the range 100~800 m,with most between 200 and 400 m.The sand bodies vary in thickness from 4 to 13 m,with most below 9 m.The width/thickness ratios lie in the range 20~55.The connectivity of braided fluvial channel sand bodies is controlled by changes of accommodation space.One fining-upward sedimentary cycle of base-level rise is recognized in Badaowan formation,representing an upward rise of base level.The connectivity of sand bodies was found to be greatest in the early stage of base-level rise,becoming progressively worse with increasing base-level rise.
文摘The knowledge of wing orientation and deformation during flapping flight is necessary for a complete aerodynamic analysis, but to date those kinematic features have not been simultaneously quantified for free-flying insects. A projected comb-fringe (PCF) method has been developed for measuring spanwise camber changes on free-flying dragonflies and on beating-flying dragonflies through the course of a wingbeat, which bases on projecting a fringe pattern over the whole measurement area and then measuring the wing deformation from the distorted fringe pattern. Experimental results demonstrate substantial camber changes both along the wingspan and through the course of a wingbeat. The ratio of camber deformation to chord length for hind wing is up to 0.11 at 75% spanwise with a flapping angle of -0.66 degree for a free-flying dragonfly.
基金the APC was funded by“Stefan cel Mare”University of Suceava,Romania。
文摘Identifying patterns,recognition systems,prediction methods,and detection methods is a major challenge in solving different medical issues.Few categories of devices for personal and professional assessment of body composition are available.Bioelectrical impedance analyzer is a simple,safe,affordable,mobile,non-invasive,and less expensive alternative device for body composition assessment.Identifying the body composition pattern of different groups with varying age and gender is a major challenge in defining an optimal level because of the body shape,body mass,energy requirements,physical fitness,health status,and metabolic profile.Thus,this research aims to identify the statistical medical pattern recognition of body composition data by using a bioelectrical impedance analyzer.In previous studies,a pattern was identified for four indicators that concern body composition(e.g.,body mass index(BMI),body fat,muscle mass,and total body water).The novelty of our study is the fact that we identified a recognition pattern by using medical statistical methods for a body composition that contains seven indicators(e.g.,body fat,visceral fat,BMI,muscle mass,skeletal muscle mass,sarcopenic index,and total body water).The youth that exhibited the body composition pattern identified in our study could be considered healthy.Every deviation of one or more parameters outside the margins of the pattern for body composition could be associated with health issues,and more medical investigations would be needed for a diagnosis.BIA is considered a valid and reliable device to assess body composition along with medical statistical methods to identify a pattern for body composition according to the age,gender,and other relevant parameters.
文摘Objective: The goal of this study was to identify commonly consumed grain food patterns in US adults (≥19 years old;N = 14,384) and compare nutrient intakes, with focus on 2015-2020 Dietary Guidelines’ shortfall nutrients, diet quality, and health parameters of those consuming various grain food patterns to those not consuming grains. Methods: This study conducted secondary analyses of the National Health and Nutrition Examination Survey, 2005-2010. Cluster analysis was used and identified 8 grain patterns: 1) no consumption of main grain groups, 2) crackers and salty snacks, 3) yeast breads and rolls, 4) cakes, cookies, and pies, 5) cereals, 6) pasta, cooked cereals and rice, 7) quick breads, and 8) mixed grains. Results: Adults consuming “cereals”, “pasta, cooked cereals and rice”, and “mixed grains” had a better diet quality compared to no grains. Consuming many, but not all, of the grain food patterns resulted in less saturated fat and lower added sugars. Adults consuming “cereals”, “pasta, cooked cereals and rice” and “quick breads” had greater dietary fiber intake vs. no grains group. Calcium intake was increased in the cereals group, while magnesium intake was greater in adults consuming “cereals” and “pasta, cooked cereals and rice” vs. no grains. Vitamin D (D2 + D3) intake was higher in adults consuming “cereals”, “pasta, cooked cereals and rice”, and “mixed grains” vs. no grain group. Adults consuming “pasta, cooked cereals and rice” had lower body weights (79.1 ± 0.7 vs. 82.5 ± 1.2 kg;P = 0.009) and waist circumference (95.2 ± 0.6 vs. 98.2 ± 1.0 cm;P = 0.004) in comparison to those consuming no grains. Conclusions: Certain grain food patterns are associated with greater 2015-2020 Dietary Guidelines’ shortfall nutrients, better diet quality and lower body weights in adults. Additionally, certain grain food patterns are associated with lower intake of nutrients to limit, including saturated fat and added sugars.
文摘The lady beetle Coleomegilla maculata is a common New World insect that is naturally colored pink to red or orange with black spots on the forewings of the adult stage. Previous laboratory in-breeding resulted in selection for a strain lacking red pigment in the cuticle and eyes. An additional strain selected for a novel spotting pattern is described here. The inheritance of the new trait, “ten spotted” (10sp), was determined by classical crossing experiments. Inheritance of the trait was autosomal and exhibited incomplete dominance. Bionomic strain measurements were compared to the parental strains and were similar overall. Two expressed sequences from C. maculata that may be related to the new phenotype were compared to model insect genes encoding a melanin biosynthesis enzyme and a patterning transcription factor.
文摘The experiments on wing-body junction and wake flow were carried cul in alow-turbulence level wind tunnel. Intensive measurements of various flow parameters,such as the distributions of the pressure on the surfaces of the airfoil and the plate wall,the mean and the fluctuating velocities, as well as the turbulent kinetic energy, u'v' andu'w'etc., were performed. The results indicate that the secondary flow entrains the highvelocity low-turbulence fluid into the boundary layer and the wake vortex dominates thewake flow. Some regions of negative eddy viscosity are also found in the wake flow.
文摘Wing-body junction turbulence flow is simulated by using RANS equation and boundary fitted coordinate technique. Three order differential scheme is used in the computation of convection term and two layers turbulence model are employed in the calculation.
基金supported by the National Defense Basic Scientific Research Program of China(No.A2520110006)the Fundamental Research Funds for the Central Universities(Nos.NJ20130001,NJ2012014)
文摘A rapid method of the trim drag prediction for the blended-wing-body unmanned aerial vehicle(UAV)configuration is proposed.The method consists of four steps.The first step is to parameterizedly model the blended-wing-body UAV configuration;the second is to analyze the aerodynamics of the geometric model;the third is to create aerodynamic surrogate model;and the final step is to predict the trim drag using the surrogate model.Hence,a tool for trim drag prediction is developed by integration of the four steps.The impacts of the allocation of control surfaces,position of gravity center and planform parameters on the trim drag are investigated by using the tool.Results show that using the control surface in outer wing for trim has an advantage of lower trim drag,and the position of gravity center has a primary impact on the trim drag.Moreover,the planform has secondary impacts on the trim drag.