This paper presents a new method of damage condition assessment that allows accommodating other types of uncertainties due to ambiguity, vagueness, and fuzziness that are statistically nondescribable. In this method, ...This paper presents a new method of damage condition assessment that allows accommodating other types of uncertainties due to ambiguity, vagueness, and fuzziness that are statistically nondescribable. In this method, healthy observations are used to construct a fury set representing sound performance characteristics. Additionally, the bounds on the similarities among the structural damage states are prescribed by using the state similarity matrix. Thus, an optimal group fuzzy sets representing damage states such as little, moderate, and severe damage can be inferred as an inverse problem from healthy observations only. The optimal group of damage fuzzy sets is used to classify a set of observations at any unknown state of damage using the principles of fitzzy pattern recognition based on an approximate principle . This method can be embedded into the system of Structural Health Monitoring (SHM) to give advice about structural maintenance and life predictio comes from Reference [ 9 ] for damage pattern recognition is presented n. Finally, a case and discussed. The study, which compared result illustrates our method is more effective and general, so it is very practical in engineering.展开更多
Matrix principal component analysis (MatPCA), as an effective feature extraction method, can deal with the matrix pattern and the vector pattern. However, like PCA, MatPCA does not use the class information of sampl...Matrix principal component analysis (MatPCA), as an effective feature extraction method, can deal with the matrix pattern and the vector pattern. However, like PCA, MatPCA does not use the class information of samples. As a result, the extracted features cannot provide enough useful information for distinguishing pat- tern from one another, and further resulting in degradation of classification performance. To fullly use class in- formation of samples, a novel method, called the fuzzy within-class MatPCA (F-WMatPCA)is proposed. F-WMatPCA utilizes the fuzzy K-nearest neighbor method(FKNN) to fuzzify the class membership degrees of a training sample and then performs fuzzy MatPCA within these patterns having the same class label. Due to more class information is used in feature extraction, F-WMatPCA can intuitively improve the classification perfor- mance. Experimental results in face databases and some benchmark datasets show that F-WMatPCA is effective and competitive than MatPCA. The experimental analysis on face image databases indicates that F-WMatPCA im- proves the recognition accuracy and is more stable and robust in performing classification than the existing method of fuzzy-based F-Fisherfaces.展开更多
Classification of the patterns is a crucial structure of research and applications. Using fuzzy set theory, classifying the patterns has become of great interest because of its ability to understand the parameters. ...Classification of the patterns is a crucial structure of research and applications. Using fuzzy set theory, classifying the patterns has become of great interest because of its ability to understand the parameters. One of the problemsobserved in the fuzzification of an unknown pattern is that importance is givenonly to the known patterns but not to their features. In contrast, features of thepatterns play an essential role when their respective patterns overlap. In this paper,an optimal fuzzy nearest neighbor model has been introduced in which a fuzzifi-cation process has been carried out for the unknown pattern using k nearest neighbor. With the help of the fuzzification process, the membership matrix has beenformed. In this membership matrix, fuzzification has been carried out of the features of the unknown pattern. Classification results are verified on a completelyllabelled Telugu vowel data set, and the accuracy is compared with the differentmodels and the fuzzy k nearest neighbor algorithm. The proposed model gives84.86% accuracy on 50% training data set and 89.35% accuracy on 80% trainingdata set. The proposed classifier learns well enough with a small amount of training data, resulting in an efficient and faster approach.展开更多
The purpose of this paper is to propose a new multi stage algorithm for the recognition of isolated characters. It was similar work done before using only the center of gravity (This paper is extended version of “A f...The purpose of this paper is to propose a new multi stage algorithm for the recognition of isolated characters. It was similar work done before using only the center of gravity (This paper is extended version of “A fast recognition system for isolated printed characters using center of gravity”, LAP LAMBERT Academic Publishing 2011, ISBN: 978-38465-0002-6), but here we add using principal axis in order to make the algorithm rotation invariant. In my previous work which is published in LAP LAMBERT, I face a big problem that when the character is rotated I can’t recognize the character. So this adds constrain on the document to be well oriented but here I use the principal axis in order to unify the orientation of the character set and the characters in the scanned document. The algorithm can be applied for any isolated character such as Latin, Chinese, Japanese, and Arabic characters but it has been applied in this paper for Arabic characters. The approach uses normalized and isolated characters of the same size and extracts an image signature based on the center of gravity of the character after making the character principal axis vertical, and then the system compares these values to a set of signatures for typical characters of the set. The system then provides the closeness of match to all other characters in the set.展开更多
基金This paper is supported by the National High Technology Research and Development Program ("863" Program) of China under Grant No.2006AA04Z437
文摘This paper presents a new method of damage condition assessment that allows accommodating other types of uncertainties due to ambiguity, vagueness, and fuzziness that are statistically nondescribable. In this method, healthy observations are used to construct a fury set representing sound performance characteristics. Additionally, the bounds on the similarities among the structural damage states are prescribed by using the state similarity matrix. Thus, an optimal group fuzzy sets representing damage states such as little, moderate, and severe damage can be inferred as an inverse problem from healthy observations only. The optimal group of damage fuzzy sets is used to classify a set of observations at any unknown state of damage using the principles of fitzzy pattern recognition based on an approximate principle . This method can be embedded into the system of Structural Health Monitoring (SHM) to give advice about structural maintenance and life predictio comes from Reference [ 9 ] for damage pattern recognition is presented n. Finally, a case and discussed. The study, which compared result illustrates our method is more effective and general, so it is very practical in engineering.
文摘Matrix principal component analysis (MatPCA), as an effective feature extraction method, can deal with the matrix pattern and the vector pattern. However, like PCA, MatPCA does not use the class information of samples. As a result, the extracted features cannot provide enough useful information for distinguishing pat- tern from one another, and further resulting in degradation of classification performance. To fullly use class in- formation of samples, a novel method, called the fuzzy within-class MatPCA (F-WMatPCA)is proposed. F-WMatPCA utilizes the fuzzy K-nearest neighbor method(FKNN) to fuzzify the class membership degrees of a training sample and then performs fuzzy MatPCA within these patterns having the same class label. Due to more class information is used in feature extraction, F-WMatPCA can intuitively improve the classification perfor- mance. Experimental results in face databases and some benchmark datasets show that F-WMatPCA is effective and competitive than MatPCA. The experimental analysis on face image databases indicates that F-WMatPCA im- proves the recognition accuracy and is more stable and robust in performing classification than the existing method of fuzzy-based F-Fisherfaces.
基金supported by the Taif University Researchers Supporting Project Number(TURSP-2020/79),Taif University,Taif,Saudi Arabia.
文摘Classification of the patterns is a crucial structure of research and applications. Using fuzzy set theory, classifying the patterns has become of great interest because of its ability to understand the parameters. One of the problemsobserved in the fuzzification of an unknown pattern is that importance is givenonly to the known patterns but not to their features. In contrast, features of thepatterns play an essential role when their respective patterns overlap. In this paper,an optimal fuzzy nearest neighbor model has been introduced in which a fuzzifi-cation process has been carried out for the unknown pattern using k nearest neighbor. With the help of the fuzzification process, the membership matrix has beenformed. In this membership matrix, fuzzification has been carried out of the features of the unknown pattern. Classification results are verified on a completelyllabelled Telugu vowel data set, and the accuracy is compared with the differentmodels and the fuzzy k nearest neighbor algorithm. The proposed model gives84.86% accuracy on 50% training data set and 89.35% accuracy on 80% trainingdata set. The proposed classifier learns well enough with a small amount of training data, resulting in an efficient and faster approach.
文摘The purpose of this paper is to propose a new multi stage algorithm for the recognition of isolated characters. It was similar work done before using only the center of gravity (This paper is extended version of “A fast recognition system for isolated printed characters using center of gravity”, LAP LAMBERT Academic Publishing 2011, ISBN: 978-38465-0002-6), but here we add using principal axis in order to make the algorithm rotation invariant. In my previous work which is published in LAP LAMBERT, I face a big problem that when the character is rotated I can’t recognize the character. So this adds constrain on the document to be well oriented but here I use the principal axis in order to unify the orientation of the character set and the characters in the scanned document. The algorithm can be applied for any isolated character such as Latin, Chinese, Japanese, and Arabic characters but it has been applied in this paper for Arabic characters. The approach uses normalized and isolated characters of the same size and extracts an image signature based on the center of gravity of the character after making the character principal axis vertical, and then the system compares these values to a set of signatures for typical characters of the set. The system then provides the closeness of match to all other characters in the set.