BACKGROUND Although chronic erosive gastritis(CEG)is common,its clinical characteristics have not been fully elucidated.The lack of consensus regarding its treatment has resulted in varied treatment regimens.AIM To ex...BACKGROUND Although chronic erosive gastritis(CEG)is common,its clinical characteristics have not been fully elucidated.The lack of consensus regarding its treatment has resulted in varied treatment regimens.AIM To explore the clinical characteristics,treatment patterns,and short-term outcomes in CEG patients in China.METHODS We recruited patients with chronic non-atrophic or mild-to-moderate atrophic gastritis with erosion based on endoscopy and pathology.Patients and treating physicians completed a questionnaire regarding history,endoscopic findings,and treatment plans as well as a follow-up questionnaire to investigate changes in symptoms after 4 wk of treatment.RESULTS Three thousand five hundred sixty-three patients from 42 centers across 24 cities in China were included.Epigastric pain(68.0%),abdominal distension(62.6%),and postprandial fullness(47.5%)were the most common presenting symptoms.Gastritis was classified as chronic non-atrophic in 69.9%of patients.Among those with erosive lesions,72.1%of patients had lesions in the antrum,51.0%had multiple lesions,and 67.3%had superficial flat lesions.In patients with epigastric pain,the combination of a mucosal protective agent(MPA)and proton pump inhibitor was more effective.For those with postprandial fullness,acid regurgitation,early satiety,or nausea,a MPA appeared more promising.CONCLUSION CEG is a multifactorial disease which is common in Asian patients and has non-specific symptoms.Gastroscopy may play a major role in its detection and diagnosis.Treatment should be individualized based on symptom profile.展开更多
The World Journal of Cardiology published an article written by Kuwahara et al that we take the pleasure to comment on.We focused our attention on venous congestion.In intensive care settings,it is now widely accepted...The World Journal of Cardiology published an article written by Kuwahara et al that we take the pleasure to comment on.We focused our attention on venous congestion.In intensive care settings,it is now widely accepted that venous congestion is an important clinical feature worthy of investigation.Evaluating venous Doppler profile abnormalities at multiple sites could suggest adequate treatment and monitor its efficacy.Renal dysfunction could trigger or worsen fluid overload in heart disease,and cardio-renal syndrome is a well-characterized spectrum of disorders describing the complex interactions between heart and kidney diseases.Fluid overload and venous congestion,including renal venous hypertension,are major determinants of acute and chronic renal dysfunction arising in heart disease.Organ congestion from venous hypertension could be involved in the development of organ injury in several clinical situations,such as critical diseases,congestive heart failure,and chronic kidney disease.Ultrasonography and abnormal Doppler flow patterns diagnose clinically significant systemic venous congestion.Cardiologists and nephrologists might use this valuable,noninvasive,bedside diagnostic tool to establish fluid status and guide clinical choices.展开更多
Experiments are conducted on the evacuation rate of pedestrians through exits with queued evacuation pattern and random evacuation pattern. The experimental results show that the flow rate of pedestrians is larger wit...Experiments are conducted on the evacuation rate of pedestrians through exits with queued evacuation pattern and random evacuation pattern. The experimental results show that the flow rate of pedestrians is larger with the random evacuation pattern than with the queued evacuation pattern. Therefore, the exit width calculated based on the minimum evacuation clear width for every 100 persons, which is on the assumption that the pedestrians pass through the exit in one queue or several queues, is conservative. The number of people crossing the exit simultaneously is greater in the random evacuation experiments than in the queued evacuation experiments, and the time interval between the front row and rear row of people is shortened in large-exit conditions when pedestrians evacuate randomly. The difference between the flow rate with a queued evacuation pattern and the flow rate with a random evacuation pattern is related to the surplus width of the exit, which is greater than the total width of all accommodated people streams. Two dimensionless quantities are defined to explore this relationship. It is found that the difference in flow rate between the two evacuation patterns is stable at a low level when the surplus width of the exit is no more than 45% of the width of a single pedestrian stream. There is a great difference between the flow rate with the queued evacuation pattern and the flow rate with the random evacuation pattern in a scenario with a larger surplus width of the exit. Meanwhile, the pedestrians crowd extraordinarily at the exit in these conditions as well, since the number of pedestrians who want to evacuate through exit simultaneously greatly exceeds the accommodated level. Therefore, the surplus width of exit should be limited especially in the narrow exit condition, and the relationship between the two dimensionless quantities mentioned above could provide the basis to some extent.展开更多
Functional magnetic resonance imaging(fMRI)is a popular tool used to investigate not only how the brain responds to specific stimuli during sensorimotor or cognitive tasks,but also brain activity at rest.The physics b...Functional magnetic resonance imaging(fMRI)is a popular tool used to investigate not only how the brain responds to specific stimuli during sensorimotor or cognitive tasks,but also brain activity at rest.The physics beyond this approach is based on the analysis of the blood oxygenation level-dependent signal.展开更多
Metal halide perovskites have emerged as promising light-emitting materials for next-generation displays owing to their remarkable material characteristics including broad color tunability,pure color emission with rem...Metal halide perovskites have emerged as promising light-emitting materials for next-generation displays owing to their remarkable material characteristics including broad color tunability,pure color emission with remarkably narrow bandwidths,high quantum yield,and solution processability.Despite recent advances have pushed the luminance efficiency of monochromic perovskite light-emitting diodes(PeLEDs)to their theoretical limits,their current fabrication using the spincoating process poses limitations for fabrication of full-color displays.To integrate PeLEDs into full-color display panels,it is crucial to pattern red–green–blue(RGB)perovskite pixels,while mitigating issues such as cross-contamination and reductions in luminous efficiency.Herein,we present state-of-the-art patterning technologies for the development of full-color PeLEDs.First,we highlight recent advances in the development of efficient PeLEDs.Second,we discuss various patterning techniques of MPHs(i.e.,photolithography,inkjet printing,electron beam lithography and laserassisted lithography,electrohydrodynamic jet printing,thermal evaporation,and transfer printing)for fabrication of RGB pixelated displays.These patterning techniques can be classified into two distinct approaches:in situ crystallization patterning using perovskite precursors and patterning of colloidal perovskite nanocrystals.This review highlights advancements and limitations in patterning techniques for PeLEDs,paving the way for integrating PeLEDs into full-color panels.展开更多
Memristors are extensively used to estimate the external electromagnetic stimulation and synapses for neurons.In this paper,two distinct scenarios,i.e.,an ideal memristor serves as external electromagnetic stimulation...Memristors are extensively used to estimate the external electromagnetic stimulation and synapses for neurons.In this paper,two distinct scenarios,i.e.,an ideal memristor serves as external electromagnetic stimulation and a locally active memristor serves as a synapse,are formulated to investigate the impact of a memristor on a two-dimensional Hindmarsh-Rose neuron model.Numerical simulations show that the neuronal models in different scenarios have multiple burst firing patterns.The introduction of the memristor makes the neuronal model exhibit complex dynamical behaviors.Finally,the simulation circuit and DSP hardware implementation results validate the physical mechanism,as well as the reliability of the biological neuron model.展开更多
A combination of hydrogels and microfluidics allows the construction of biomimetic three-dimensional(3D)tissue models in vitro,which are also known as organ-on-a-chipmodels.The hydrogel patterningwith awell-controlled...A combination of hydrogels and microfluidics allows the construction of biomimetic three-dimensional(3D)tissue models in vitro,which are also known as organ-on-a-chipmodels.The hydrogel patterningwith awell-controlled spatial distribution is typically achieved by embedding sophisticated microstructures to act as a boundary.However,these physical barriers inevitably expose cells/tissues to a less physiologically relevant microenvironment than in vivo conditions.Herein,we present a novel dissolvable temporary barrier(DTB)strategy that allows robust and flexible hydrogel patterning with great freedom of design and desirable flow stimuli for cellular hydrogels.The key aspect of this approach is the patterning of a water-soluble rigid barrier as a guiding path for the hydrogel using stencil printing technology,followed by a barrier-free medium perfusion after the dissolution of the DTB.Single and multiple tissue compartments with different geometries can be established using either straight or curved DTB structures.The effectiveness of this strategy is further validated by generating a 3D vascular network through vasculogenesis and angiogenesis using a vascularized microtumor model.As a new proof-of-concept in vasculature-on-a-chip,DTB enables seamless contact between the hydrogel and the culture medium in closed microdevices,which is an improved protocol for the fabrication ofmultiorgan chips.Therefore,we expect it to serve as a promising paradigm for organ-on-a-chip devices for the development of tumor vascularization and drug evaluation in the future preclinical studies.展开更多
The China-Myanmar Economic Corridor(CMEC) is an important part of China's Belt and Road Initiative and an important area for global ecology and biodiversity. In this study, the annual and seasonal spatiotemporal p...The China-Myanmar Economic Corridor(CMEC) is an important part of China's Belt and Road Initiative and an important area for global ecology and biodiversity. In this study, the annual and seasonal spatiotemporal patterns of temperature and precipitation in the CMEC over the past century were investigated using linear tendency estimation, the Mann-Kendall mutation test, the T-test, and wavelet analysis based on the monthly mean climatic data from 1901 to 2018 released by the Climatic Research Unit(CRU) of the University of East Anglia, UK. The results show that the CMEC demonstrated a trend of warming and drying over the past 100 years, and the rate of change in Myanmar was stronger than that in Yunnan Province of China. The warming rate was 0.039 ℃/10a. Precipitation decreased at a rate of -6.1 mm/10a. From the perspective of spatial distribution, temperature was high in the central and southern, low in the north of the CMEC, and the high-temperature centers were mainly distributed in the southern plain and river valley. Precipitation decreased from west to east and from south to north of the CMEC. From the perspective of the rate of change, warming was stronger in central and northern CMEC than in southern and northeastern CMEC. The rate of precipitation decline was stronger in the central and western regions than in the eastern region. This study provides a scientific reference for the CMEC to address climate change and ensure sustainable social and economic development and ecological security.展开更多
Positional information encoded in spatial concentration patterns is crucial for the development of multicellular organisms.However,it is still unclear how such information is affected by the physically dissipative dif...Positional information encoded in spatial concentration patterns is crucial for the development of multicellular organisms.However,it is still unclear how such information is affected by the physically dissipative diffusion process.Here we study one-dimensional patterning systems with analytical derivation and numerical simulations.We find that the diffusion constant of the patterning molecules exhibits a nonmonotonic effect on the readout of the positional information from the concentration patterns.Specifically,there exists an optimal diffusion constant that maximizes the positional information.Moreover,we find that the energy dissipation due to the physical diffusion imposes a fundamental upper limit on the positional information.展开更多
As information acquisition terminals for artificial olfaction,chemiresistive gas sensors are often troubled by their cross-sensitivity,and reducing their cross-response to ambient gases has always been a difficult and...As information acquisition terminals for artificial olfaction,chemiresistive gas sensors are often troubled by their cross-sensitivity,and reducing their cross-response to ambient gases has always been a difficult and important point in the gas sensing area.Pattern recognition based on sensor array is the most conspicuous way to overcome the cross-sensitivity of gas sensors.It is crucial to choose an appropriate pattern recognition method for enhancing data analysis,reducing errors and improving system reliability,obtaining better classification or gas concentration prediction results.In this review,we analyze the sensing mechanism of crosssensitivity for chemiresistive gas sensors.We further examine the types,working principles,characteristics,and applicable gas detection range of pattern recognition algorithms utilized in gas-sensing arrays.Additionally,we report,summarize,and evaluate the outstanding and novel advancements in pattern recognition methods for gas identification.At the same time,this work showcases the recent advancements in utilizing these methods for gas identification,particularly within three crucial domains:ensuring food safety,monitoring the environment,and aiding in medical diagnosis.In conclusion,this study anticipates future research prospects by considering the existing landscape and challenges.It is hoped that this work will make a positive contribution towards mitigating cross-sensitivity in gas-sensitive devices and offer valuable insights for algorithm selection in gas recognition applications.展开更多
Potassium(K),calcium(Ca),and magnesium(Mg)are essential elements with important physiological functions in plants.Previous studies showed that leaf K,Ca,and Mg concentrations generally increase with increasing latitud...Potassium(K),calcium(Ca),and magnesium(Mg)are essential elements with important physiological functions in plants.Previous studies showed that leaf K,Ca,and Mg concentrations generally increase with increasing latitudes.However,recent meta-analyses suggested the possibility of a unimodal pattern in the concentrations of these elements along latitudinal gradients.The authenticity of this unimodal latitudinal pattern,however,requires validation through large-scale field experimental data,and exploration of the underlying mechanisms if the pattern is confirmed.Here,we collected leaves of common species of woody plants from 19 montane forests in the north-south transect of eastern China,including 322 species from 160 genera,67 families;and then determined leaf K,Ca,and Mg concentrations to explore their latitudinal patterns and driving mechanisms.Our results support unimodal latitudinal patterns for all three elements in woody plants across eastern China,with peak values at latitude 36.5±1.0°N.The shift of plant-functional-type compositions from evergreen broadleaves to deciduous broadleaves and to conifers along this latitudinal span was the key factor contributing to these patterns.Climatic factors,mainly temperature,and to a lesser extent solar radiation and precipitation,were the main environmental drivers.These factors,by altering the composition of plant communities and regulating plant physiological activities,influence the latitudinal patterns of plant nutrient concentrations.Our findings also suggest that high leaf K,Ca,and Mg concentrations may represent an adaptive strategy for plants to withstand water stress,which might be used to predict plant nutrient responses to climate changes at large scales,and broaden the understanding of biogeochemical cycling of K,Ca,and Mg.展开更多
Since China’s reform and opening-up,the growing disparity between urban and rural areas and regions has led to massive migration.With China’s Rural Revitalization Strategy and the industrial transfer from the easter...Since China’s reform and opening-up,the growing disparity between urban and rural areas and regions has led to massive migration.With China’s Rural Revitalization Strategy and the industrial transfer from the eastern coastal areas to the inland,the migration direction and pattern of the floating population have undergone certain changes.Using the 2017 China Migrants Dynamic Survey(CMDS),excluding Hong Kong,Macao,and Taiwan regions of China,organized by China’s National Health Commission,the relationship matrix of the floating population is constructed according to the inflow place of the interviewees and their outflow place(the location of the registered residence)in the questionnaire survey.We then apply the complex network model to analyze the migration direction and network pattern of China’s floating population from the city scale.The migration network shows an obvious hierarchical agglomeration.The first-,second-,third-and fourth-tier distribution cities are municipalities directly under the central government,provincial capital cities,major cities in the central and western regions and ordinary cities in all provinces,respectively.The migration trend is from the central and western regions to the eastern coastal areas.The migration network has‘small world’characteristics,forming nine communities.It shows that most node cities in the same community are closely linked and geographically close,indicating that the migration network of floating population is still affected by geographical proximity.Narrowing the urban-rural and regional differences will promote the rational distribution this population.It is necessary to strengthen the reform of the registered residence system,so that the floating population can enjoy urban public services comparable to other populations,and allow migrants to live and work in peace.展开更多
Objective: Plant-based diets have multiple health benefits for cancers;however, little is known about the association between plant-based dietary patterns and esophageal cancer(EC).This study presents an investigation...Objective: Plant-based diets have multiple health benefits for cancers;however, little is known about the association between plant-based dietary patterns and esophageal cancer(EC).This study presents an investigation of the prospective associations among three predefined indices of plant-based dietary patterns and the risk of EC.Methods: We performed endoscopic screening for 15,709 participants aged 40-69 years from two high-risk areas of China from January 2005 to December 2009 and followed the cohort until December 31, 2022. The overall plant-based diet index(PDI), healthful plant-based diet index(h PDI), and unhealthful plant-based diet index(u PDI), were calculated using survey responses to assess dietary patterns. We applied Cox proportional hazard regression to estimate the multivariable hazard ratios(HRs) and 95% confidence intervals(95% CIs) of EC across 3plant-based diet indices and further stratified the analysis by subgroups.Results: The final study sample included 15,184 participants in the cohort. During a follow-up of 219,365person-years, 176 patients with EC were identified. When the highest quartile was compared with the lowest quartile, the pooled multivariable-adjusted HR of EC was 0.50(95% CI, 0.32-0.77) for h PDI. In addition, the HR per 10-point increase in the h PDI score was 0.42(95% CI, 0.27-0.66) for ECs. Conversely, u PDI was positively associated with the risk of EC, and the HR was 1.80(95% CI, 1.16-2.82). The HR per 10-point increase in the u PDI score was 1.90(95% CI, 1.26-2.88) for ECs. The associations between these scores and the risk of EC were consistent in most subgroups. These results remained robust in sensitivity analyses.Conclusions: A healthy plant-based dietary pattern was associated with a reduced risk of EC. Emphasizing the healthiness and quality of plant-based diets may be important for preventing the development of EC.展开更多
Much of the world's biodiversity lies in heterogeneous mountain areas with their diverse environments.As an example,Iranian montane ranges are highly diverse,particularly in the Irano-Turanian phytogeographical re...Much of the world's biodiversity lies in heterogeneous mountain areas with their diverse environments.As an example,Iranian montane ranges are highly diverse,particularly in the Irano-Turanian phytogeographical region.Understanding plant diversity patterns with increasing elevation is of high significance,not least for conservation planning.We studied the pattern of species richness,Shannon diversity,endemic richness,endemics ratio,and richness of life forms along a 3900 m elevational transect in Mount Palvar,overlooking the Lut Desert in Southeast Iran.We also analyzed the effect of environmental variables on species turnover along the vertical gradient.A total of 120 vegetation plots(10 m×10 m)were sampled along the elevational transect containing species and environmental data.To discover plant diversity pattern along the elevational gradient,generalized additive model(GAM)was used.Non-metric multidimensional scaling(NMDS)was applied for illustrating the correlation between species composition and environmental variables.We found hump-shaped pattern for species richness,Shannon diversity,endemic richness,and species richness of different life forms,but a monotonic increasing pattern for ratio of endemic species from low to high elevations.Our study confirms the humped pattern of species richness peaking at intermediate elevations along a complete elevational gradient in a semi-arid mountain.The monotonic increase of endemics ratio with elevation in our area as a case study is consistent with global increase of endemism with elevation.According to our results,temperature and precipitation are two important climatic variables that drive elevational plant diversity,particularly in seasonally dry areas.Our study suggests that effective conservation and management are needed for this low latitude mountain area along with calling for long-term monitoring for species redistribution.展开更多
Wetlands are important for maintaining global ecosystem functions,mitigating global climate change,and regulating regional climate change.Ecological problems caused by global climate change have had serious impacts on...Wetlands are important for maintaining global ecosystem functions,mitigating global climate change,and regulating regional climate change.Ecological problems caused by global climate change have had serious impacts on plant distribution patterns in the wetlands of riparian zones,as well as on microbial community habitats in the soil.This study was based on a field sampling survey of the distribution characteristics of plant communities in the Ulson River,combined with remote sensing to obtain the spatial distribution pattern of vegetation in the riparian wetland.High-throughput sequencing technology combined with the characteristics of soil physicochemical factors were then used to explore the distribution characteristics of the community structures of soil bacteria and fungi under different vegetation types in the Ulson River Basin,in order to reveal the pattern of changes of soil microbial microorganisms under the different vegetation types in the wetlands of the riparian area and the factors driving those changes.The results showed an obvious banding phenomenon of wetland vegetation in the Ulson River Basin.Proteobacteria ranked first in relative abundance in all the sample plots and were the dominant bacteria in the study area.Ascomycota and Basidiomycota were the dominant fungi in the study area.In swamp areas,degenerate swamp soils,soil moisture content,and soil bulk density affected the microbial richness directly or indirectly by controlling soil nutrients.Plant aboveground biomass was the most significant factor influencing microbial diversity in a typical wet meadow sample.In salinized meadows and swamped meadows,electrical conductivity affected microbial richness and soil bulk density was the main factor influencing microbial diversity.The findings of this study can provide a theoretical basis for the ecological restoration of degraded riparian wetlands and further clarification of soil ecosystem functions in riparian wetlands.展开更多
Reproductive strategies of sexually dimorphic plants vary in response to the environment.Here,we ask whether the sexual systems of Fagopyrum species(i.e.,selfing homostylous and out-crossing distylous)represent distin...Reproductive strategies of sexually dimorphic plants vary in response to the environment.Here,we ask whether the sexual systems of Fagopyrum species(i.e.,selfing homostylous and out-crossing distylous)represent distinct adaptive strategies to increase reproductive success in changing alpine environments.To answer this question,we determined how spatial and temporal factors(e.g.,elevation and peak flowering time)affect reproductive success(i.e.,stigmatic pollen load)in nine wild Fagopyrum species(seven distylous and two homostylous)among 28 populations along an elevation gradient of 1299-3315 m in the Hengduan Mountains,southwestern China.We also observed pollinators and conducted hundreds of hand pollinations to investigate inter/intra-morph compatibility,self-compatibility and pollen limitation in four Fagopyrum species(two distylous and two homostylous).We found that Fagopyrum species at higher elevation generally had bigger flowers and more stigmatic pollen loads;lateflowering individuals had smaller flowers and lower pollen deposition.Stigmatic pollen deposition was more variable in distylous species than in homostylous species.Although seed set was not pollenlimited in all species,we found that fruit set was much lower in distylous species,which rely on frequent pollinator visits,than in homostylous species capable of autonomous self-pollination.Our findings that pollination success increases at high elevations and decreases during the flowering season suggest that distylous and homostylous species have spatially and temporally distinct reproductive strategies related to environment-dependent pollinator activity.展开更多
The complex and volatile international landscape has significantly impacted global grain supply security. This study uses a complex network analysis model to examine the evolution and trends of the global major grain ...The complex and volatile international landscape has significantly impacted global grain supply security. This study uses a complex network analysis model to examine the evolution and trends of the global major grain trade from 1990 to 2020, focusing on network topology, centrality ranking, and community structure. There are three major findings. First, the global major grain trade network has expanded in scale, with a growing emphasis on diversification and balance. During the study period, the United States, Canada, China, and Brazil were the core nodes of the network. Grain-exporting countries were mainly situated in Asia, the Americas, and Europe, and importing countries in Asia, Africa, and Europe. Second, a significant increase in the number of high centrality countries with high export capacity occurred, benefiting from natural advantages such as fertile land and favorable climates. Third, the main global grain trade network is divided into four communities, with the Americas-Europe community being the largest and most widespread. The formation of the community pattern was influenced by geographic proximity, driven by the core exporting countries. Therefore, the world needs to enhance the existing trade model, promote the multi-polarization of the grain trade network, and establish a global vision for the future community. Countries and regions should participate actively in global grain trade security governance and institutional reform, expand trade links with other countries, and optimize import and export policies to reduce trade risks.展开更多
Lithography is a pivotal micro/nanomanufacturing technique,facilitating performance enhancements in an extensive array of devices,encompassing sensors,transistors,and photovoltaic devices.The key to creating highly pr...Lithography is a pivotal micro/nanomanufacturing technique,facilitating performance enhancements in an extensive array of devices,encompassing sensors,transistors,and photovoltaic devices.The key to creating highly precise,multiscale-distributed patterned structures is the precise control of the lithography process.Herein,high-quality patterned ZnO nanostructures are constructed by systematically tuning the exposure and development times during lithography.By optimizing these parameters,ZnO nanorod arrays with line/hole arrangements are successfully prepared.Patterned ZnO nanostructures with highly controllable morphology and structure possess discrete three-dimensional space structure,enlarged surface area,and improved light capture ability,which achieve highly efficient energy conversion in perovskite solar cells.The lithography process management for these patterned ZnO nanostructures provides important guidance for the design and construction of complex nanostructures and devices with excellent performance.展开更多
Abrupt near-surface temperature changes in mountainous areas are a special component of the mountain climate system.Fast and accurate measurements of the locations,intensity,and width of the near-surface changes are n...Abrupt near-surface temperature changes in mountainous areas are a special component of the mountain climate system.Fast and accurate measurements of the locations,intensity,and width of the near-surface changes are necessary but highly difficult due to the complicated environmental conditions and instrumental issues.This paper develops a spatial pattern recognition method to measure the near-surface high temperature increase(NSHTI),one of the lesser-attended changes.First,raster window measurement was proposed to calculate the temperature lapse rate using MODIS land surface temperature and SRTM DEM data.It fully considers the terrain heights of two neighboring cells on opposite or adjacent slopes with a moving window of 3×3 cell size.Second,a threshold selection was performed to identify the NSHTI cells using a threshold of-0.65℃/100 m.Then,the NSHTI strips were parameterized through raster vectorization and spatial analysis.Taking Yunnan,a mountainous province in southwestern China,as the study area,the results indicate that the NSHTI cells concentrate in a strip-like pattern along the mountains and valleys,and the strips are almost parallel to the altitude contours with a slight northward uplift.Also,they are located mostly at a 3/5 height of high mountains or within 400 m from the valley floors,where the controlling topographic index is the altitude of the terrain trend surface but not the absolute elevation and the topographic uplift height and cutting depth.Additionally,the NSHTI intensity varies with the geographic locations and the proportions increase with an exponential trend,and the horizontal width has a mean of about 1000 m and a maximum of over 5000 m.The result demonstrates that the proposed method can effectively recognize NSHTI boundaries over mountains,providing support for the modeling of weather and climate systems and the development of mountain resources.展开更多
基金the National Key Clinical Specialty Construction Project,No.ZK108000CAMS Innovation Fund for Medical Sciences,No.2021-I2M-C&T-A-001 and No.2022-I2M-C&T-B-012.
文摘BACKGROUND Although chronic erosive gastritis(CEG)is common,its clinical characteristics have not been fully elucidated.The lack of consensus regarding its treatment has resulted in varied treatment regimens.AIM To explore the clinical characteristics,treatment patterns,and short-term outcomes in CEG patients in China.METHODS We recruited patients with chronic non-atrophic or mild-to-moderate atrophic gastritis with erosion based on endoscopy and pathology.Patients and treating physicians completed a questionnaire regarding history,endoscopic findings,and treatment plans as well as a follow-up questionnaire to investigate changes in symptoms after 4 wk of treatment.RESULTS Three thousand five hundred sixty-three patients from 42 centers across 24 cities in China were included.Epigastric pain(68.0%),abdominal distension(62.6%),and postprandial fullness(47.5%)were the most common presenting symptoms.Gastritis was classified as chronic non-atrophic in 69.9%of patients.Among those with erosive lesions,72.1%of patients had lesions in the antrum,51.0%had multiple lesions,and 67.3%had superficial flat lesions.In patients with epigastric pain,the combination of a mucosal protective agent(MPA)and proton pump inhibitor was more effective.For those with postprandial fullness,acid regurgitation,early satiety,or nausea,a MPA appeared more promising.CONCLUSION CEG is a multifactorial disease which is common in Asian patients and has non-specific symptoms.Gastroscopy may play a major role in its detection and diagnosis.Treatment should be individualized based on symptom profile.
文摘The World Journal of Cardiology published an article written by Kuwahara et al that we take the pleasure to comment on.We focused our attention on venous congestion.In intensive care settings,it is now widely accepted that venous congestion is an important clinical feature worthy of investigation.Evaluating venous Doppler profile abnormalities at multiple sites could suggest adequate treatment and monitor its efficacy.Renal dysfunction could trigger or worsen fluid overload in heart disease,and cardio-renal syndrome is a well-characterized spectrum of disorders describing the complex interactions between heart and kidney diseases.Fluid overload and venous congestion,including renal venous hypertension,are major determinants of acute and chronic renal dysfunction arising in heart disease.Organ congestion from venous hypertension could be involved in the development of organ injury in several clinical situations,such as critical diseases,congestive heart failure,and chronic kidney disease.Ultrasonography and abnormal Doppler flow patterns diagnose clinically significant systemic venous congestion.Cardiologists and nephrologists might use this valuable,noninvasive,bedside diagnostic tool to establish fluid status and guide clinical choices.
基金Project supported by the Special Funds for Basic Operating Expenses of the Centre University of China (Grant No.23ZYJS006)。
文摘Experiments are conducted on the evacuation rate of pedestrians through exits with queued evacuation pattern and random evacuation pattern. The experimental results show that the flow rate of pedestrians is larger with the random evacuation pattern than with the queued evacuation pattern. Therefore, the exit width calculated based on the minimum evacuation clear width for every 100 persons, which is on the assumption that the pedestrians pass through the exit in one queue or several queues, is conservative. The number of people crossing the exit simultaneously is greater in the random evacuation experiments than in the queued evacuation experiments, and the time interval between the front row and rear row of people is shortened in large-exit conditions when pedestrians evacuate randomly. The difference between the flow rate with a queued evacuation pattern and the flow rate with a random evacuation pattern is related to the surplus width of the exit, which is greater than the total width of all accommodated people streams. Two dimensionless quantities are defined to explore this relationship. It is found that the difference in flow rate between the two evacuation patterns is stable at a low level when the surplus width of the exit is no more than 45% of the width of a single pedestrian stream. There is a great difference between the flow rate with the queued evacuation pattern and the flow rate with the random evacuation pattern in a scenario with a larger surplus width of the exit. Meanwhile, the pedestrians crowd extraordinarily at the exit in these conditions as well, since the number of pedestrians who want to evacuate through exit simultaneously greatly exceeds the accommodated level. Therefore, the surplus width of exit should be limited especially in the narrow exit condition, and the relationship between the two dimensionless quantities mentioned above could provide the basis to some extent.
文摘Functional magnetic resonance imaging(fMRI)is a popular tool used to investigate not only how the brain responds to specific stimuli during sensorimotor or cognitive tasks,but also brain activity at rest.The physics beyond this approach is based on the analysis of the blood oxygenation level-dependent signal.
基金the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(Grant No.2021R1C1C1007997).
文摘Metal halide perovskites have emerged as promising light-emitting materials for next-generation displays owing to their remarkable material characteristics including broad color tunability,pure color emission with remarkably narrow bandwidths,high quantum yield,and solution processability.Despite recent advances have pushed the luminance efficiency of monochromic perovskite light-emitting diodes(PeLEDs)to their theoretical limits,their current fabrication using the spincoating process poses limitations for fabrication of full-color displays.To integrate PeLEDs into full-color display panels,it is crucial to pattern red–green–blue(RGB)perovskite pixels,while mitigating issues such as cross-contamination and reductions in luminous efficiency.Herein,we present state-of-the-art patterning technologies for the development of full-color PeLEDs.First,we highlight recent advances in the development of efficient PeLEDs.Second,we discuss various patterning techniques of MPHs(i.e.,photolithography,inkjet printing,electron beam lithography and laserassisted lithography,electrohydrodynamic jet printing,thermal evaporation,and transfer printing)for fabrication of RGB pixelated displays.These patterning techniques can be classified into two distinct approaches:in situ crystallization patterning using perovskite precursors and patterning of colloidal perovskite nanocrystals.This review highlights advancements and limitations in patterning techniques for PeLEDs,paving the way for integrating PeLEDs into full-color panels.
基金supported by the National Natural Science Foundation of China(Grant No.62061014)Technological Innovation Projects in the Field of Artificial Intelligence in Liaoning province(Grant No.2023JH26/10300011)Basic Scientific Research Projects in Department of Education of Liaoning Province(Grant No.JYTZD2023021).
文摘Memristors are extensively used to estimate the external electromagnetic stimulation and synapses for neurons.In this paper,two distinct scenarios,i.e.,an ideal memristor serves as external electromagnetic stimulation and a locally active memristor serves as a synapse,are formulated to investigate the impact of a memristor on a two-dimensional Hindmarsh-Rose neuron model.Numerical simulations show that the neuronal models in different scenarios have multiple burst firing patterns.The introduction of the memristor makes the neuronal model exhibit complex dynamical behaviors.Finally,the simulation circuit and DSP hardware implementation results validate the physical mechanism,as well as the reliability of the biological neuron model.
基金supported by the National Natural Science Foundation of China(Nos.31972929 and 62231025)the Research Program of Shanghai Science and Technology Committee(Nos.21140901300 and 20DZ2220400)+3 种基金the Natural Science Foundation of Chongqing,China(No.CSTB2022NSCQ-MSX0767)the Interdisciplinary Program of Shanghai Jiao Tong University(Nos.YG2021ZD22 and YG2023LC04)the Foundation of National Center for Translational Medicine(Shanghai)SHU Branch(No.SUITM-2023008)the Cross-disciplinary Research Fund of Shanghai Ninth People’s Hospital,Shanghai Jiao Tong University School of Medicine(No.JYJC202108).
文摘A combination of hydrogels and microfluidics allows the construction of biomimetic three-dimensional(3D)tissue models in vitro,which are also known as organ-on-a-chipmodels.The hydrogel patterningwith awell-controlled spatial distribution is typically achieved by embedding sophisticated microstructures to act as a boundary.However,these physical barriers inevitably expose cells/tissues to a less physiologically relevant microenvironment than in vivo conditions.Herein,we present a novel dissolvable temporary barrier(DTB)strategy that allows robust and flexible hydrogel patterning with great freedom of design and desirable flow stimuli for cellular hydrogels.The key aspect of this approach is the patterning of a water-soluble rigid barrier as a guiding path for the hydrogel using stencil printing technology,followed by a barrier-free medium perfusion after the dissolution of the DTB.Single and multiple tissue compartments with different geometries can be established using either straight or curved DTB structures.The effectiveness of this strategy is further validated by generating a 3D vascular network through vasculogenesis and angiogenesis using a vascularized microtumor model.As a new proof-of-concept in vasculature-on-a-chip,DTB enables seamless contact between the hydrogel and the culture medium in closed microdevices,which is an improved protocol for the fabrication ofmultiorgan chips.Therefore,we expect it to serve as a promising paradigm for organ-on-a-chip devices for the development of tumor vascularization and drug evaluation in the future preclinical studies.
基金funded by the Natural Science Foundation of China (Grant No. 42271030)Fujian Provincial Funds for Distinguished Young Scientists (Grant No. 2022J06018)Applied Basic Research Programs of Yunnan province (Grant No. 202001BB050073)。
文摘The China-Myanmar Economic Corridor(CMEC) is an important part of China's Belt and Road Initiative and an important area for global ecology and biodiversity. In this study, the annual and seasonal spatiotemporal patterns of temperature and precipitation in the CMEC over the past century were investigated using linear tendency estimation, the Mann-Kendall mutation test, the T-test, and wavelet analysis based on the monthly mean climatic data from 1901 to 2018 released by the Climatic Research Unit(CRU) of the University of East Anglia, UK. The results show that the CMEC demonstrated a trend of warming and drying over the past 100 years, and the rate of change in Myanmar was stronger than that in Yunnan Province of China. The warming rate was 0.039 ℃/10a. Precipitation decreased at a rate of -6.1 mm/10a. From the perspective of spatial distribution, temperature was high in the central and southern, low in the north of the CMEC, and the high-temperature centers were mainly distributed in the southern plain and river valley. Precipitation decreased from west to east and from south to north of the CMEC. From the perspective of the rate of change, warming was stronger in central and northern CMEC than in southern and northeastern CMEC. The rate of precipitation decline was stronger in the central and western regions than in the eastern region. This study provides a scientific reference for the CMEC to address climate change and ensure sustainable social and economic development and ecological security.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.32271293 and 11875076)。
文摘Positional information encoded in spatial concentration patterns is crucial for the development of multicellular organisms.However,it is still unclear how such information is affected by the physically dissipative diffusion process.Here we study one-dimensional patterning systems with analytical derivation and numerical simulations.We find that the diffusion constant of the patterning molecules exhibits a nonmonotonic effect on the readout of the positional information from the concentration patterns.Specifically,there exists an optimal diffusion constant that maximizes the positional information.Moreover,we find that the energy dissipation due to the physical diffusion imposes a fundamental upper limit on the positional information.
基金supported by the National Key Research and Development Program of China(2021YFB3200400)the National Natural Science Foundation of China(62371299,62301314,and 62020106006)the China Postdoctoral Science Foundation(2023M732198).
文摘As information acquisition terminals for artificial olfaction,chemiresistive gas sensors are often troubled by their cross-sensitivity,and reducing their cross-response to ambient gases has always been a difficult and important point in the gas sensing area.Pattern recognition based on sensor array is the most conspicuous way to overcome the cross-sensitivity of gas sensors.It is crucial to choose an appropriate pattern recognition method for enhancing data analysis,reducing errors and improving system reliability,obtaining better classification or gas concentration prediction results.In this review,we analyze the sensing mechanism of crosssensitivity for chemiresistive gas sensors.We further examine the types,working principles,characteristics,and applicable gas detection range of pattern recognition algorithms utilized in gas-sensing arrays.Additionally,we report,summarize,and evaluate the outstanding and novel advancements in pattern recognition methods for gas identification.At the same time,this work showcases the recent advancements in utilizing these methods for gas identification,particularly within three crucial domains:ensuring food safety,monitoring the environment,and aiding in medical diagnosis.In conclusion,this study anticipates future research prospects by considering the existing landscape and challenges.It is hoped that this work will make a positive contribution towards mitigating cross-sensitivity in gas-sensitive devices and offer valuable insights for algorithm selection in gas recognition applications.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA26040202)the National Natural Science Foundation of China(41173083)+1 种基金SL was also supported by the National Natural Science Foundation of China(32001165)the Natural Science Foundation of Sichuan Province(2022NSFSC1753)。
文摘Potassium(K),calcium(Ca),and magnesium(Mg)are essential elements with important physiological functions in plants.Previous studies showed that leaf K,Ca,and Mg concentrations generally increase with increasing latitudes.However,recent meta-analyses suggested the possibility of a unimodal pattern in the concentrations of these elements along latitudinal gradients.The authenticity of this unimodal latitudinal pattern,however,requires validation through large-scale field experimental data,and exploration of the underlying mechanisms if the pattern is confirmed.Here,we collected leaves of common species of woody plants from 19 montane forests in the north-south transect of eastern China,including 322 species from 160 genera,67 families;and then determined leaf K,Ca,and Mg concentrations to explore their latitudinal patterns and driving mechanisms.Our results support unimodal latitudinal patterns for all three elements in woody plants across eastern China,with peak values at latitude 36.5±1.0°N.The shift of plant-functional-type compositions from evergreen broadleaves to deciduous broadleaves and to conifers along this latitudinal span was the key factor contributing to these patterns.Climatic factors,mainly temperature,and to a lesser extent solar radiation and precipitation,were the main environmental drivers.These factors,by altering the composition of plant communities and regulating plant physiological activities,influence the latitudinal patterns of plant nutrient concentrations.Our findings also suggest that high leaf K,Ca,and Mg concentrations may represent an adaptive strategy for plants to withstand water stress,which might be used to predict plant nutrient responses to climate changes at large scales,and broaden the understanding of biogeochemical cycling of K,Ca,and Mg.
基金Under the auspices of the Fund of Social Sciences Research,Ministry of Education of China(No.17YJA840011)。
文摘Since China’s reform and opening-up,the growing disparity between urban and rural areas and regions has led to massive migration.With China’s Rural Revitalization Strategy and the industrial transfer from the eastern coastal areas to the inland,the migration direction and pattern of the floating population have undergone certain changes.Using the 2017 China Migrants Dynamic Survey(CMDS),excluding Hong Kong,Macao,and Taiwan regions of China,organized by China’s National Health Commission,the relationship matrix of the floating population is constructed according to the inflow place of the interviewees and their outflow place(the location of the registered residence)in the questionnaire survey.We then apply the complex network model to analyze the migration direction and network pattern of China’s floating population from the city scale.The migration network shows an obvious hierarchical agglomeration.The first-,second-,third-and fourth-tier distribution cities are municipalities directly under the central government,provincial capital cities,major cities in the central and western regions and ordinary cities in all provinces,respectively.The migration trend is from the central and western regions to the eastern coastal areas.The migration network has‘small world’characteristics,forming nine communities.It shows that most node cities in the same community are closely linked and geographically close,indicating that the migration network of floating population is still affected by geographical proximity.Narrowing the urban-rural and regional differences will promote the rational distribution this population.It is necessary to strengthen the reform of the registered residence system,so that the floating population can enjoy urban public services comparable to other populations,and allow migrants to live and work in peace.
基金supported by grants from the Beijing Nova Program (No. Z201100006820069)CAMS Innovation Fund for Medical Sciences (CIFMS, No. 2021-I2M-1-023, 2021-I2M-1-010)Talent Incentive Program of Cancer Hospital Chinese Academy of Medical Sciences (Hope Star)。
文摘Objective: Plant-based diets have multiple health benefits for cancers;however, little is known about the association between plant-based dietary patterns and esophageal cancer(EC).This study presents an investigation of the prospective associations among three predefined indices of plant-based dietary patterns and the risk of EC.Methods: We performed endoscopic screening for 15,709 participants aged 40-69 years from two high-risk areas of China from January 2005 to December 2009 and followed the cohort until December 31, 2022. The overall plant-based diet index(PDI), healthful plant-based diet index(h PDI), and unhealthful plant-based diet index(u PDI), were calculated using survey responses to assess dietary patterns. We applied Cox proportional hazard regression to estimate the multivariable hazard ratios(HRs) and 95% confidence intervals(95% CIs) of EC across 3plant-based diet indices and further stratified the analysis by subgroups.Results: The final study sample included 15,184 participants in the cohort. During a follow-up of 219,365person-years, 176 patients with EC were identified. When the highest quartile was compared with the lowest quartile, the pooled multivariable-adjusted HR of EC was 0.50(95% CI, 0.32-0.77) for h PDI. In addition, the HR per 10-point increase in the h PDI score was 0.42(95% CI, 0.27-0.66) for ECs. Conversely, u PDI was positively associated with the risk of EC, and the HR was 1.80(95% CI, 1.16-2.82). The HR per 10-point increase in the u PDI score was 1.90(95% CI, 1.26-2.88) for ECs. The associations between these scores and the risk of EC were consistent in most subgroups. These results remained robust in sensitivity analyses.Conclusions: A healthy plant-based dietary pattern was associated with a reduced risk of EC. Emphasizing the healthiness and quality of plant-based diets may be important for preventing the development of EC.
文摘Much of the world's biodiversity lies in heterogeneous mountain areas with their diverse environments.As an example,Iranian montane ranges are highly diverse,particularly in the Irano-Turanian phytogeographical region.Understanding plant diversity patterns with increasing elevation is of high significance,not least for conservation planning.We studied the pattern of species richness,Shannon diversity,endemic richness,endemics ratio,and richness of life forms along a 3900 m elevational transect in Mount Palvar,overlooking the Lut Desert in Southeast Iran.We also analyzed the effect of environmental variables on species turnover along the vertical gradient.A total of 120 vegetation plots(10 m×10 m)were sampled along the elevational transect containing species and environmental data.To discover plant diversity pattern along the elevational gradient,generalized additive model(GAM)was used.Non-metric multidimensional scaling(NMDS)was applied for illustrating the correlation between species composition and environmental variables.We found hump-shaped pattern for species richness,Shannon diversity,endemic richness,and species richness of different life forms,but a monotonic increasing pattern for ratio of endemic species from low to high elevations.Our study confirms the humped pattern of species richness peaking at intermediate elevations along a complete elevational gradient in a semi-arid mountain.The monotonic increase of endemics ratio with elevation in our area as a case study is consistent with global increase of endemism with elevation.According to our results,temperature and precipitation are two important climatic variables that drive elevational plant diversity,particularly in seasonally dry areas.Our study suggests that effective conservation and management are needed for this low latitude mountain area along with calling for long-term monitoring for species redistribution.
基金The National Natural Science Foundation of China(32161143025,32160279,31960249)The Science and Technology Major Project of Inner Mongolia(2022YFHH0017,2021ZD0011)+1 种基金The Ordos Science and Technology Plan(2022EEDSKJZDZX010,2022EEDSKJXM005)The Mongolian Foundation for Science and Technology(NSFC_2022/01,CHN2022/276)。
文摘Wetlands are important for maintaining global ecosystem functions,mitigating global climate change,and regulating regional climate change.Ecological problems caused by global climate change have had serious impacts on plant distribution patterns in the wetlands of riparian zones,as well as on microbial community habitats in the soil.This study was based on a field sampling survey of the distribution characteristics of plant communities in the Ulson River,combined with remote sensing to obtain the spatial distribution pattern of vegetation in the riparian wetland.High-throughput sequencing technology combined with the characteristics of soil physicochemical factors were then used to explore the distribution characteristics of the community structures of soil bacteria and fungi under different vegetation types in the Ulson River Basin,in order to reveal the pattern of changes of soil microbial microorganisms under the different vegetation types in the wetlands of the riparian area and the factors driving those changes.The results showed an obvious banding phenomenon of wetland vegetation in the Ulson River Basin.Proteobacteria ranked first in relative abundance in all the sample plots and were the dominant bacteria in the study area.Ascomycota and Basidiomycota were the dominant fungi in the study area.In swamp areas,degenerate swamp soils,soil moisture content,and soil bulk density affected the microbial richness directly or indirectly by controlling soil nutrients.Plant aboveground biomass was the most significant factor influencing microbial diversity in a typical wet meadow sample.In salinized meadows and swamped meadows,electrical conductivity affected microbial richness and soil bulk density was the main factor influencing microbial diversity.The findings of this study can provide a theoretical basis for the ecological restoration of degraded riparian wetlands and further clarification of soil ecosystem functions in riparian wetlands.
基金supported by the National Natural Science Foundation of China(Nos.31900204,32071671,32030071)the Postdoctoral Research Foundation of China(grant no.2019M652674)the Fundamental Research Funds for the Central Universities(grant no.CCNU22LJ003).
文摘Reproductive strategies of sexually dimorphic plants vary in response to the environment.Here,we ask whether the sexual systems of Fagopyrum species(i.e.,selfing homostylous and out-crossing distylous)represent distinct adaptive strategies to increase reproductive success in changing alpine environments.To answer this question,we determined how spatial and temporal factors(e.g.,elevation and peak flowering time)affect reproductive success(i.e.,stigmatic pollen load)in nine wild Fagopyrum species(seven distylous and two homostylous)among 28 populations along an elevation gradient of 1299-3315 m in the Hengduan Mountains,southwestern China.We also observed pollinators and conducted hundreds of hand pollinations to investigate inter/intra-morph compatibility,self-compatibility and pollen limitation in four Fagopyrum species(two distylous and two homostylous).We found that Fagopyrum species at higher elevation generally had bigger flowers and more stigmatic pollen loads;lateflowering individuals had smaller flowers and lower pollen deposition.Stigmatic pollen deposition was more variable in distylous species than in homostylous species.Although seed set was not pollenlimited in all species,we found that fruit set was much lower in distylous species,which rely on frequent pollinator visits,than in homostylous species capable of autonomous self-pollination.Our findings that pollination success increases at high elevations and decreases during the flowering season suggest that distylous and homostylous species have spatially and temporally distinct reproductive strategies related to environment-dependent pollinator activity.
基金funded by the National Natural Science Foundation of China(42271313)the Chinese Academy of Agricultural Sciences Innovation Project(CAAS-ASTIP2021-AII)the Central Public-interest Scientific Institution Basal Research Fund,China(JBYW-AII-2022-06,JBYWAII-2022-40)。
文摘The complex and volatile international landscape has significantly impacted global grain supply security. This study uses a complex network analysis model to examine the evolution and trends of the global major grain trade from 1990 to 2020, focusing on network topology, centrality ranking, and community structure. There are three major findings. First, the global major grain trade network has expanded in scale, with a growing emphasis on diversification and balance. During the study period, the United States, Canada, China, and Brazil were the core nodes of the network. Grain-exporting countries were mainly situated in Asia, the Americas, and Europe, and importing countries in Asia, Africa, and Europe. Second, a significant increase in the number of high centrality countries with high export capacity occurred, benefiting from natural advantages such as fertile land and favorable climates. Third, the main global grain trade network is divided into four communities, with the Americas-Europe community being the largest and most widespread. The formation of the community pattern was influenced by geographic proximity, driven by the core exporting countries. Therefore, the world needs to enhance the existing trade model, promote the multi-polarization of the grain trade network, and establish a global vision for the future community. Countries and regions should participate actively in global grain trade security governance and institutional reform, expand trade links with other countries, and optimize import and export policies to reduce trade risks.
基金financially supported by the National Key Research and Development Program of China(No.2018YFA0703500)the National Natural Science Foundation of China(Nos.52232006,52188101,52102153,52072029,51991340,and 51991342)+3 种基金the Overseas Expertise Introduction Projects for Discipline Innovation,China(No.B14003)the Fundamental Research Funds for the Central Universities,China(Nos.FRF-TP-18-001C1 and 06500160)the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities)(Nos.FRF-IDRY-21-019 and FRFIDRY-21-014)the State Key Lab for Advanced Metals a nd Materials,China(No.2023-Z01)。
文摘Lithography is a pivotal micro/nanomanufacturing technique,facilitating performance enhancements in an extensive array of devices,encompassing sensors,transistors,and photovoltaic devices.The key to creating highly precise,multiscale-distributed patterned structures is the precise control of the lithography process.Herein,high-quality patterned ZnO nanostructures are constructed by systematically tuning the exposure and development times during lithography.By optimizing these parameters,ZnO nanorod arrays with line/hole arrangements are successfully prepared.Patterned ZnO nanostructures with highly controllable morphology and structure possess discrete three-dimensional space structure,enlarged surface area,and improved light capture ability,which achieve highly efficient energy conversion in perovskite solar cells.The lithography process management for these patterned ZnO nanostructures provides important guidance for the design and construction of complex nanostructures and devices with excellent performance.
基金supported by the National Natural Science Foundation of China (Grant No. 42061004)the Joint Special Project of Agricultural Basic Research of Yunnan Province (Grant No. 202101BD070001093)the Youth Special Project of Xingdian Talent Support Program of Yunnan Province
文摘Abrupt near-surface temperature changes in mountainous areas are a special component of the mountain climate system.Fast and accurate measurements of the locations,intensity,and width of the near-surface changes are necessary but highly difficult due to the complicated environmental conditions and instrumental issues.This paper develops a spatial pattern recognition method to measure the near-surface high temperature increase(NSHTI),one of the lesser-attended changes.First,raster window measurement was proposed to calculate the temperature lapse rate using MODIS land surface temperature and SRTM DEM data.It fully considers the terrain heights of two neighboring cells on opposite or adjacent slopes with a moving window of 3×3 cell size.Second,a threshold selection was performed to identify the NSHTI cells using a threshold of-0.65℃/100 m.Then,the NSHTI strips were parameterized through raster vectorization and spatial analysis.Taking Yunnan,a mountainous province in southwestern China,as the study area,the results indicate that the NSHTI cells concentrate in a strip-like pattern along the mountains and valleys,and the strips are almost parallel to the altitude contours with a slight northward uplift.Also,they are located mostly at a 3/5 height of high mountains or within 400 m from the valley floors,where the controlling topographic index is the altitude of the terrain trend surface but not the absolute elevation and the topographic uplift height and cutting depth.Additionally,the NSHTI intensity varies with the geographic locations and the proportions increase with an exponential trend,and the horizontal width has a mean of about 1000 m and a maximum of over 5000 m.The result demonstrates that the proposed method can effectively recognize NSHTI boundaries over mountains,providing support for the modeling of weather and climate systems and the development of mountain resources.