期刊文献+
共找到3,411篇文章
< 1 2 171 >
每页显示 20 50 100
Progress,challenges,and prospects of spent lithium-ion batteries recycling:A review 被引量:3
1
作者 Pengwei Li Shaohua Luo +7 位作者 Lin Zhang Qiuyue Liu Yikai Wang Yicheng Lin Can Xu Jia Guo Peam Cheali Xiaoning Xia 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期144-171,I0005,共29页
The recycling and reutilization of spent lithium-ion batteries(LIBs)have become an important measure to alleviate problems like resource scarcity and environmental pollution.Although some progress has been made,batter... The recycling and reutilization of spent lithium-ion batteries(LIBs)have become an important measure to alleviate problems like resource scarcity and environmental pollution.Although some progress has been made,battery recycling technology still faces challenges in terms of efficiency,effectiveness and environmental sustainability.This review aims to systematically review and analyze the current status of spent LIB recycling,and conduct a detailed comparison and evaluation of different recycling processes.In addition,this review introduces emerging recycling techniques,including deep eutectic solvents,molten salt roasting,and direct regeneration,with the intent of enhancing recycling efficiency and diminishing environmental repercussions.Furthermore,to increase the added value of recycled materials,this review proposes the concept of upgrading recycled materials into high value-added functional materials,such as catalysts,adsorbents,and graphene.Through life cycle assessment,the paper also explores the economic and environmental impacts of current battery recycling and highlights the importance that future recycling technologies should achieve a balance between recycling efficiency,economics and environmental benefits.Finally,this review outlines the opportunities and challenges of recycling key materials for next-generation batteries,and proposes relevant policy recommendations to promote the green and sustainable development of batteries,circular economy,and ecological civilization. 展开更多
关键词 Spent li-ion batteries RECYCLE Direct regeneration High-value conversion Functional materials
下载PDF
Multi-Component Resource Recycling from Waste Light-Emitting Diode Under Hydrothermal Condition:Plastic Package Degradation,Speciation of Nano-TiO_(2),and Environmental Impact Assessment
2
作者 Yongliang Zhang Lu Zhan Zhenming Xu 《Engineering》 SCIE EI CAS CSCD 2024年第8期253-261,共9页
Light emitting diodes(LEDs)have accounted for most of the lighting market as the technology matures and costs continue to reduce.As a new type of e-waste,LED is a double-edged sword,as it contains not only precious an... Light emitting diodes(LEDs)have accounted for most of the lighting market as the technology matures and costs continue to reduce.As a new type of e-waste,LED is a double-edged sword,as it contains not only precious and rare metals but also organic packaging materials.In previous studies,LED recycling focused on recovering precious and strategic metals while ignoring harmful substances such as organic packaging materials.Unlike crushing and other traditional methods,hydrothermal treatment can provide an environment-friendly process for decomposing packaging materials.This work developed a closed reaction vessel,where the degradation rate of plastic polyphthalamide(PPA)was close to 100%,with nano-TiO_(2)encapsulated in plastic PPA being efficiently recovered,while metals contained in LED were also recycled efficiently.Besides,the role of water in plastic PPA degradation that has been overlooked in current studies was explored and speculated in detail in this work.Environmental impact assessment revealed that the proposed recycling route for waste LED could significantly reduce the overall environmental impact compared to the currently published processes.Especially the developed method could reduce more than half the impact of global warming.Furthermore,this research provides a theoretical basis and a promising method for recycling other plastic-packaged e-waste devices,such as integrated circuits. 展开更多
关键词 Waste LED Hydrothermal treatment recycling Plastic PPA degradation Packaging materials
下载PDF
Modelling of the variation of granular base materials resilient modulus with material characteristics and humidity conditions
3
作者 Jean-Pascal Bilodeau Erdrick Leandro Perez-Gonzalez Ali Saeidi 《Journal of Road Engineering》 2024年第1期27-35,共9页
This study aims to quantify the susceptibility of granular materials used in pavements to changes in moisture content and propose a correlation model to incorporate this susceptibility into seasonal analyses.The fines... This study aims to quantify the susceptibility of granular materials used in pavements to changes in moisture content and propose a correlation model to incorporate this susceptibility into seasonal analyses.The fines content and the percentage of fractured coarse aggregates were identified as direct indicators of the resilient modulus susceptibility to changes in water content.The results showed that the percentage of fractured coarse aggregates particles(FR)has a more significant impact on the resilient modulus(Er)of crushed granular materials used in pavement construction than the combined indicator of the fines content and sample volumetrics(nf).Crushed granular materials with a higher percentage of fractured coarse aggregates are relatively insensitive to changes in the degree of saturation,but become more sensitive as the fine fraction porosity decreases.An adjusted model was proposed based on the existing formulation,but considers a complex parameter to describe and adjust the sensitivity of base granular materials to variations in moisture content with respect to fabrication charac-teristics,fines content and volumetric properties.The model shows that the variation of Er values is below10%for fully crushed granular materials.However,it reaches approximately±12%for materials with 75%of crushed coarse aggregates andþ40%and-25%for materials with FR=50%.This model could help select good ag-gregates characteristics and adjust grain-size distribution for environments where significant moisture content variations can occur in the pavement system,such as in the Province of Quebec(Canada).As it is based on pa-rameters that can be easily determined or estimated,it also represents a valuable tool for detailed design and analysis that can consider material characteristics. 展开更多
关键词 Resilient modulus Degree of saturation Humidity conditions Unbound granular materials pavement base
下载PDF
A systematic review of rigid-flexible composite pavement
4
作者 Zhaohui Liu Shiqing Yu +2 位作者 You Huang Li Liu Yu Pan 《Journal of Road Engineering》 2024年第2期203-223,共21页
Rigid-flexible composite pavement has gained significant popularity in recent decades.This paper provides a comprehensive review of the research progress concerning rigid-flexible composite pavement,aiming to promote ... Rigid-flexible composite pavement has gained significant popularity in recent decades.This paper provides a comprehensive review of the research progress concerning rigid-flexible composite pavement,aiming to promote its application and address key issues while identifying future directions.The design theory and methodology of rigid-flexible composite pavement are discussed,followed by a description of its structural and mechanical behavior characteristics.The load stress,temperature stress,and their interactive effects between the asphalt layer and the rigid base were analyzed.It is clarified that the asphalt layer serves a dual role as both a“functional layer”and a“structural layer”.Typical distresses of rigid-flexible composite pavement,which primarily occur in the asphalt layer,were discussed.These distresses include reflective cracking,top-down cracking,rutting,and compressive-shear failure.Generally,the integrity of the rigid base and the interlaminar bonding conditions significantly impact the performance and distress of the asphalt layer.The technology for enhancing the performance of rigid-flexible composite pavement is summarized in three aspects:asphalt layer properties,rigid base integrity,and interlaminar bonding condition.The study concludes that developing high-performance pavement materials based on their structural behaviors is an effective approach to improve the performance and durability of rigid-flexible composite pavement.The integrated design of structure and materials represents the future direction of road design. 展开更多
关键词 Rigid-flexible composite pavement Structural mechanical properties Compression-shear failure Integrated design of structure and material
下载PDF
Heat transfer model for microwave hot in-place recycling of asphalt pavements 被引量:3
5
作者 孙铜生 史金飞 朱松青 《Journal of Southeast University(English Edition)》 EI CAS 2008年第1期59-63,共5页
In order to solve for temperature fields in microwave heating for recycling asphalt mixtures, a two-dimensional heat transfer model for the asphalt mixtures within the heating range is built based on the theory of uns... In order to solve for temperature fields in microwave heating for recycling asphalt mixtures, a two-dimensional heat transfer model for the asphalt mixtures within the heating range is built based on the theory of unsteady heat conduction. Four onedimensional heat transfer models are established for the asphalt mixtures outside the heating range, which are simplified into four half-infinite solids. The intensity of the radiation electric field is calculated through experiment by using heating water loads. It is suggested that the mathematical model of boundary conditions can be established in two ways, which are theoretical deduction and experimental reverse. The actual temperature field is achieved by fitting temperatures of different positions collected in the heating experiment. The simulant temperature field, which is solved with the Matlab PDE toolbox, is in good agreement with the actual temperature field. The results indicate that the proposed models have high precision and can be directly used to calculate the temperature distribution of asphalt pavements. 展开更多
关键词 asphalt pavements microwave hot in-place recycling heat transfer model boundary condition intensity of radiation electric field microwave heating experiment
下载PDF
A closed-loop process for recycling LiNi_xCo_yMn_((1-x-y))O_2 from mixed cathode materials of lithium-ion batteries 被引量:14
6
作者 Rujuan Zheng Wenhui Wang +6 位作者 Yunkun Dai Quanxin Ma Yuanlong Liu Deying Mu Ruhong Li Jie Rena Changsong Dai 《Green Energy & Environment》 SCIE 2017年第1期42-50,共9页
With the rapid development of consumer electronics and electric vehicles(EV), a large number of spent lithium-ion batteries(LIBs) have been generated worldwide. Thus, effective recycling technologies to recapture a si... With the rapid development of consumer electronics and electric vehicles(EV), a large number of spent lithium-ion batteries(LIBs) have been generated worldwide. Thus, effective recycling technologies to recapture a significant amount of valuable metals contained in spent LIBs are highly desirable to prevent the environmental pollution and resource depletion. In this work, a novel recycling technology to regenerate a LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 cathode material from spent LIBs with different cathode chemistries has been developed. By dismantling, crushing,leaching and impurity removing, the LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2(selected as an example of LiNi_xCo_yMn_(1-x-y)O_2) powder can be directly prepared from the purified leaching solution via co-precipitation followed by solid-state synthesis. For comparison purposes, a fresh-synthesized sample with the same composition has also been prepared using the commercial raw materials via the same method. X-ray diffraction(XRD), scanning electron microscopy(SEM) and electrochemical measurements have been carried out to characterize these samples. The electrochemical test result suggests that the re-synthesized sample delivers cycle performance and low rate capability which are comparable to those of the freshsynthesized sample. This novel recycling technique can be of great value to the regeneration of a pure and marketable LiNi_xCo_yMn_(1-x-y)O_2 cathode material with low secondary pollution. 展开更多
关键词 Spent lithium-ion battery Cathode material recycling Acid leaching Purification CO-PRECIPITATION
下载PDF
Evaluation of Mixture Performance Recycled Asphalt Pavement Materials as Base Layer with or without Rejuvenator into the Asphalt 被引量:4
7
作者 Alaye Quirin Engelbert Ayeditan LING XianZhang +1 位作者 DONG Zejiao Bambou Ghislain 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第3期579-597,共19页
The binder properties were determined in accordance with Chinese standard such as ductility test, which allowed to measure the distance in centimeters that a standard briquette of asphalt had been stretched before bre... The binder properties were determined in accordance with Chinese standard such as ductility test, which allowed to measure the distance in centimeters that a standard briquette of asphalt had been stretched before breaking. Then, penetration test was carried out in order to know some properties of the asphalt, which are the hardness and the softness. Finally, softening point test was carried out in order to determine the temperature at which the bitumen attains a particular degree of softening under the specification of the test. According to Chinese standard for performance tests, firstly, Marshall test was carried out in order to measure the theoretical density, air voids, voids filled with asphalt, stability, flow, and voids in mineral aggregate of asphalt specimens. Secondly, Freeze-thaw splitting test was carried out in order to determine Splitting strength ratio. Finally, dynamic stability (rutting) test was carried out to determine average dynamic stability. Beside the tests carried out, the gradation of the extracted aggregate in accordance with American Association of State Highway and Transportation Officials was carried out to determine the dimensions of the particles weight distribution. Furthermore, both the percentage of recycled asphalt pavement materials and binder in mixture were determined to know how much of the new material during the mixture was needed. However, two specimens were used to evaluate the performance of recycled asphalt pavement materials. One specimen of recycled asphalt pavement materials was ten years old, and another one of recycled asphalt pavement materials was five years old. The results show that the conditions of the environment such as moisture, temperature, and age, decrease the ductility and penetration properties of binder when increase the softening point property of binder. Then the gradation of recycled asphalt pavement aggregate is of the required values to reuse in the mixture, while the flow ratio, the splitting strength ratio, and the dynamic stability ratio, are less than the required value test. With regard to the properties of mixture of recycled asphalt pavement material binder with rejuvenator, the results show that when the penetration and ductility versus percentage of rejuvenator increase, softening point versus percentage of rejuvenator decreases. Also, when the bitumen and rejuvenator percentage increase, the air voids decrease. Consequently, voids filled with asphalt and voids in the mineral aggregate increase. Moreover, the theoretical density and stability values decrease in a mixture containing four-point fifty percent to six percent of bitumen and rejuvenator, whereas the flow values increase. More interestingly, with four percent to four-point fifty percent mixture ratio of bitumen and rejuvenator, density, stability, and flow values increase. The splitting strength ratio values of mixtures and the dynamic stability test (rutting test) values of mixtures with forty percent of specimen one and specimen two respectively are greater than the required value of the standard test. In addition, the high percentage of rejuvenator increases the rut of pavement, in the same manner, the low percentage of rejuvenator induces low rut. In conclusion, the binder content from recycled materials without rejuvenator seems not be sufficient to be reused on the new pavement while the aged recycled material seems to be performed better than no aged recycled material with rejuvenator into bitumen. Then, the rejuvenator can influence the bitumen properties and performance of the pavement. Finally, the pavement made by only recycled pavement materials as a base layer appears to be more economical but cannot be more effective than the pavement made by mixture of new and recycled pavement materials as a base layer. 展开更多
关键词 recycled asphalt pavement rejuvenator ASPHALT RUTTING PERFORMANCE
下载PDF
Numerical simulation analysis on multi-layer low-temperature heating method of asphalt pavement in hot in-place recycling 被引量:4
8
作者 MA Deng-cheng LAN Fen 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第12期3793-3806,共14页
Asphalt mixture pavement reheating is one of the important steps in hot in-place recycling(HIR).To improve the heating speed of asphalt pavement in HIR,based on the numerical analysis model of asphalt mixture heating ... Asphalt mixture pavement reheating is one of the important steps in hot in-place recycling(HIR).To improve the heating speed of asphalt pavement in HIR,based on the numerical analysis model of asphalt mixture heating process,a new multi-layer low-temperature heating method(MLHM)was proposed.Considering input heat flux,the thermal capacity and thermal resistance of asphalt mixture,the heat transfer model was established based on energy conservation law.By heating the asphalt mixture in layers,it changes the situation that the heat energy can only be input from the upper surface of the asphalt mixture pavement.Through the simulation of the heating method of asphalt mixture in the existing technology,the result shows that the existing heating methods lead to serious aging or charring of the asphalt mixture.By MLHM,the upper and the bottom of the asphalt mixture are heated at the same time,and the heating temperature is lower than other heat methods,which not only reduces the heating thickness and increases the heating area of the asphalt mixture pavement,but also improves the heating speed,saves the energy resource and ensures the heating quality.Especially,by MLHM,the heating uniformity is better and speed is faster. 展开更多
关键词 asphalt pavement hot in-place recycling heating speed heating uniformity MULTI-LAYER LOW-TEMPERATURE
下载PDF
Performance of RAP in the System of Cold Inplace Recycling of Asphalt Pavement 被引量:2
9
作者 马保国 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第6期1211-1214,共4页
The property of reclaimed asphalt pavement(RAP) mixture will be affected mainly by composition of old asphalt/soil and cement content in CIR system. We studied the relationship between A/S and cementitious materials... The property of reclaimed asphalt pavement(RAP) mixture will be affected mainly by composition of old asphalt/soil and cement content in CIR system. We studied the relationship between A/S and cementitious materials. It showed that if there was no soil in RAP, the unconfined compressive strength was only from 0.18 MPa to 1.07 MPa even if adding cement was from 2% to 6%, and RAP samples collapsed during conserving in water. The optimum water content rose from 6.5% to 11% with the declining of A/S from S=0 to A/S=1/5. Five RAP samples all got the maximum compressive strength when A/S=5/5, and the maximum compressive strength of the samples adding 6% cement was 3.17 MPa. It showed that the capacity of RAP was not only affected by A/S, but also by the content of cement. The dynamic modulus of RAP will increase with the rise of loading frequency and decrease with the temperature rising. SEM test showed that C-S-H interlacing formed the netted structure, and it enwrapped the aggregate and improved the strength of RAP. 展开更多
关键词 cold in-place recycling(CIR) old asphalt reclaimed asphalt pavement (RAP) compressive strength dynamic modulus
下载PDF
Recycling of minute metal scraps by semisolid processing:Manufacturing of design materials 被引量:2
10
作者 S.SUGIYAMA T.MER A J.YANAGIMOTO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第9期1567-1571,共5页
As a new attempt to recycle minute metal scraps, the possibility of manufacturing design materials by semisolid extrusion processing was shown.A design material with an intended shape, such as a character or petal sha... As a new attempt to recycle minute metal scraps, the possibility of manufacturing design materials by semisolid extrusion processing was shown.A design material with an intended shape, such as a character or petal shape, was manufactured using minute metal scraps.Similarly, a design material with an intended color pattern for each metal, such as red copper in a white aluminum matrix, resembling grainlike wood, was manufactured by mixing two or more types of minute metal scrap.In addition, secondary design materials, which have engraved patterns on the surface of the target metal made by an electric discharge machine using the above primary design material as an electrode, were manufactured. 展开更多
关键词 semisolid processing minute metal scraps recycling design material
下载PDF
The Effects of Road and Other Pavement Materials on Urban Heat Island (A Case Study of Port Harcourt City) 被引量:1
11
作者 Elenwo Ephraim Ikechukwu 《Journal of Environmental Protection》 2015年第4期328-340,共13页
Urban centers are consistently exhibiting higher temperature than its surrounding suburban rural areas. The large amount of heat generated from urban structures such as road materials and pavement materials and other ... Urban centers are consistently exhibiting higher temperature than its surrounding suburban rural areas. The large amount of heat generated from urban structures such as road materials and pavement materials and other anthropogenic heat sources are the main causes of Urban Heat Island (UHI). The sources of data for this research included primary and secondary sources. Other techniques employed for data collection were direct measurement and readings on the road and pavement materials. The research found out that, there was consistency in rising temperature at different time of the day by the different road and pavement materials. Asphalt has the greatest effect of increasing the urban temperature four degrees higher, followed by concrete, three degree rise in temperature, and earth (ordinary ground) by two degree rise and vegetation (grass) by one degree rise in temperature. The overall effect on the residents of the study area ranges from increase in hotness of the day;44.6% respondents agrees;while 34.3% says it affects the ambient air quality of the area, and other effects such as increased ground level ozone, suffocation, sleeplessness and restlessness as a result of excessive high temperature especially at night are identified in this paper. The research recommends the review or redesigning of the entire Port Harcourt city Master Plan to make provision for creation of more green areas rather than pavements and concreted areas to reduce the effects of (UHI) and ultimately improve the comfort and living conditions of the people in a the garden city Port Harcourt. 展开更多
关键词 EFFECTS Road and pavement materials Urban Heat ISLAND RESIDENTS PORT Harcourt
下载PDF
Control of Pavement-Surface Temperature-Rise Using Recycled Materials 被引量:1
12
作者 Satoru Ishiguro Masayoshi Yamanaka 《Journal of Civil Engineering and Architecture》 2016年第1期37-43,共7页
High temperatures of the asphalt concrete pavements in summer contribute to the heat island phenomenon in the urban areas. The effective cool-pavement technologies are sought to mitigate the pavement environment. In t... High temperatures of the asphalt concrete pavements in summer contribute to the heat island phenomenon in the urban areas. The effective cool-pavement technologies are sought to mitigate the pavement environment. In this paper, developed heat-reflective pavements are constructed from open-graded asphalt concrete, in which voids in the upper part of the pavement are filled with a cement mortar, containing recycled materials as a fine aggregate. The recycled materials used in this study are: crushed oyster shells, roof tile debris, pottery debris, glass cullet, crushed escallops and coral sand. The temperature reduction of the pavement surfaces at an open site is measured in the summer. The results show that the maximum surface temperature of the pavements falls by approximately 8-10 ℃ compared to the asphalt concrete pavement. Furthermore, it is found that the temperature reduction is mainly due to the increased solar radiation reflectance of the pavement surface. 展开更多
关键词 Heat-reflecting pavement asphalt concrete pavement filling mortar oyster shell recycled materials.
下载PDF
Exploration on the Recycling of Waste Building Materials in Comprehensive Land Consolidation from the Perspective of Ecological Civilization 被引量:1
13
作者 ZHU Xiaodan 《Journal of Landscape Research》 2021年第2期80-82,共3页
The necessity and difficulties of waste building material utilization in comprehensive land consolidation are put forward by analyzing the source,quantity and harm of waste building materials.Combined with the practic... The necessity and difficulties of waste building material utilization in comprehensive land consolidation are put forward by analyzing the source,quantity and harm of waste building materials.Combined with the practice of Shanghai,the mechanism and pattern of waste building materials recycling are explored,in order to provide the reference for recycling of waste building materials and efficient promotion of land consolidation. 展开更多
关键词 Waste building materials recycling Classified disposal Information regulation
下载PDF
Critical Materials Institute develops new acid-free magnet recycling process 被引量:1
14
《China Rare Earth Information》 2017年第9期7-8,共2页
A new rare-earth magnet recycling process developed by researchers at the Critical Materials Institute (CMI) dissolves magnets in an acid-free solution and recovers high purity rare earth elements. For shredded magnet... A new rare-earth magnet recycling process developed by researchers at the Critical Materials Institute (CMI) dissolves magnets in an acid-free solution and recovers high purity rare earth elements. For shredded magnet-containing electronic wastes, the process does not require pre-processing such as pre-sorting or demagnetization of the electronic waste. 展开更多
关键词 A NEW RARE-EARTH MAGNET recycling process developed by researchers at the CRITICAL materials Institute (CMI)
下载PDF
Cold In-Place Recycling as a Sustainable Pavement Practice
15
作者 Kang-Won Wayne Lee Max Mueller Ajay Singh 《Journal of Civil Engineering and Architecture》 2014年第6期680-692,共13页
Pavement rehabilitation and reconstruction methods with CIR (cold in-place recycling) are alternatives that can effectively reduce the high stresses and waste produced by conventional pavement strategies. An attempt... Pavement rehabilitation and reconstruction methods with CIR (cold in-place recycling) are alternatives that can effectively reduce the high stresses and waste produced by conventional pavement strategies. An attempt was made to predict the performance, particularly low-temperature cracking resistance characteristics of CIR mixtures. These were prepared with the mix design procedure developed at the URI (University of Rhode Island) for the FHWA (Federal Highway Administration) to reduce wide variations in the application of CIR mixtures production. This standard was applied to RAP (reclaimed asphalt pavement) to produce CIR mixtures with CSS-Ih asphalt emulsion as the additive. By adjusting the number of gyrations of the SGC (Superpave gyratory compactor) for compaction, the field density of 130 pcf was represented accurately. To secure a base line, HMA (hot mix asphalt) samples were produced according to the Superpave volumetric mix design procedure. The specimens were tested using the IDT (indirect tensile) tester according to the procedure of AASHTO T 322 procedure at temperatures of-20, -10 and 0 ℃ (-4, 14, and 32°F, respectively). The obtained results for the creep compliance and tensile strength were used as input data for the MEPDG (mechanistic empirical pavement design guide). The analysis results indicated that no thermal or low-temperature cracking is expected over the entire analysis period of 20 years for both HMA and CIR mixtures. Thus, it appears that CIR is a sustainable rehabilitation technique which is also suitable for colder climates, and it is recommended to conduct further investigation of load-related distresses such as rutting and fatigue cracking. 展开更多
关键词 Cold in-place recycling sustainable pavement asphalt pavement pavement rehabilitation and reconstruction Superpavegyratory compactor indirect tensile test.
下载PDF
Paving Materials and Engineering Applications of Permeable Pavement
16
作者 Zhuang Liu 《Journal of World Architecture》 2022年第2期15-18,共4页
The stability of roads in cities directly affects the safety of traffic and transportation.In the process of pavement laying,relevant personnel should use permeable paving materials in the process of construction.Base... The stability of roads in cities directly affects the safety of traffic and transportation.In the process of pavement laying,relevant personnel should use permeable paving materials in the process of construction.Based on the analysis of road drainage requirements,traditional paving materials have relatively poor water permeability,which leads to ponding problems during road use[1].Within this frame of reference,beginning with the characteristics of permeable paving materials,this paper makes an in-depth exploration on practical application measures. 展开更多
关键词 Permeable pavement Paving materials Engineering application POROSITY
下载PDF
Recycled, Bio-Based, and Blended Composite Materials for 3D Printing Filament: Pros and Cons—A Review
17
作者 Khanh Q. Nguyen Pascal Y. Vuillaume +4 位作者 Lei Hu Jorge López-Beceiro Patrice Cousin Saïd Elkoun Mathieu Robert 《Materials Sciences and Applications》 2023年第3期148-185,共38页
In recent years, additive manufacturing (AM), known as “3D printing”, has experienced exceptional growth thanks to the development of mechatronics and materials science. Fused filament deposition (FDM) manufacturing... In recent years, additive manufacturing (AM), known as “3D printing”, has experienced exceptional growth thanks to the development of mechatronics and materials science. Fused filament deposition (FDM) manufacturing is the most widely used technique in the field of AM, due to low operating and material costs. However, the materials commonly used for this technology are virgin thermoplastics. It is worth noting a considerable amount of waste exists due to failed print and disposable prototypes. In this regard, using green and sustainable materials is essential to limit the impact on the environment. The recycled, bio-based, and blended recycled materials are therefore a potential approach for 3D printing. In contrast, the lack of understanding of the mechanism of interlayer adhesion and the degradation of materials for FDM printing has posed a major challenge for these green materials. This paper provides an overview of the FDM technique and material requirements for 3D printing filaments. The main objective is to highlight the advantages and disadvantages of using recycled, bio-based, and blended materials based on thermoplastics for 3D printing filaments. In this work, solutions to improve the mechanical properties of 3D printing parts before, during, and after the printing process are pointed out. This paper provides an overview on choosing which materials and solutions depend on the specific application purposes. Moreover, research gaps and opportunities are mentioned in the discussion and conclusions sections of this study. 展开更多
关键词 Additive Manufacturing 3D Printing Fused Filament Deposition (FDM) Manufacturing Recycled Bio-Based Blended materials INTERLAYER
下载PDF
A systematic review of steel bridge deck pavement in China
18
作者 Leilei Chen Xinyuan Zhao +1 位作者 Zhendong Qian Jiaqi Li 《Journal of Road Engineering》 2023年第1期1-15,共15页
As an important part of steel bridge deck,the engineering quality and service condition of steel bridge deck pavement(SBDP)directly affects the capacity and operational efficiency of the bridge.This paper reviews the ... As an important part of steel bridge deck,the engineering quality and service condition of steel bridge deck pavement(SBDP)directly affects the capacity and operational efficiency of the bridge.This paper reviews the history of the development of SBDP in China over the past 20 years from the exploration stage,rapid development stage and prosperity stage.The development and application of SBDP at different stages are discussed in terms of materials,structure,design,performance evaluation,maintenance and rehabilitation,respectively.The advantages and disadvantages of different pavement materials and structures,and the application of different research methods are summarized.The review shows that the improvement of pavement materials and structures and the development of new materials should be further studied on the multi-scale to enhance the durability of pavement materials,so as to extend the service life of pavements.The design method of SBDP related to the synergistic effect of vehicle,pavement and bridge should be established,and the design concept and method standard of rigid base pavement structure should be improved and formulate a complete design standard.In addition,multi-disease intelligent identification system and equipment should be studied to track the entire course of disease development in real time.And it is necessary to develop appropriate algorithms to select and classify the complex data of disease and maintenance history. 展开更多
关键词 Steel bridge deck pavement pavement material and structure pavement design Service performance Maintenance and rehabilitation
下载PDF
刚柔复合式路面结构与材料及发展趋势 被引量:2
19
作者 刘朝晖 黄优 +4 位作者 余时清 刘靖宇 李盛 柳力 潘宇 《中外公路》 2024年第2期27-53,共27页
刚柔复合式路面作为一种耐久性路面结构,广泛应用于重载交通、特殊地质条件、桥隧铺装等工程。为进一步推动耐久性刚柔复合式路面的应用,明确研究中的关键问题及发展方向,该文综述了国内外刚柔复合式路面的相关研究进展。在梳理刚柔复... 刚柔复合式路面作为一种耐久性路面结构,广泛应用于重载交通、特殊地质条件、桥隧铺装等工程。为进一步推动耐久性刚柔复合式路面的应用,明确研究中的关键问题及发展方向,该文综述了国内外刚柔复合式路面的相关研究进展。在梳理刚柔复合式路面结构设计理论及施工技术的基础上,首先阐述了刚柔复合式路面的结构力学行为特征,分析了沥青面层和刚性基层的荷载应力、温度应力及其交互影响,刚性基层上的沥青面层一方面直接承受荷载和环境作用,另一方面可以改善下卧结构层的应力场和温度场,是影响刚柔复合式路面服役性能及使用寿命的关键;明确了刚柔复合式路面的病害主要出现在沥青面层,由于沥青面层与刚性基层之间的模量差异巨大,刚性基层上的沥青面层更倾向于产生压剪破坏,刚性基层的开裂以及刚‒柔层间的结合状态对沥青路面的性能也有着显著影响;最后,分别从沥青面层抗剪、基层板整体性、刚‒柔层间结合3个方面归纳了刚柔复合式路面性能的提升技术。基于刚柔复合式路面的结构力学特性,开展结构‒高性能材料一体化设计是提升刚柔复合式路面使用性能和耐久性的有效途径。 展开更多
关键词 道路工程 刚柔复合式路面 结构力学特性 压剪破坏 结构材料一体化 综述
下载PDF
吸波沥青混合料的制备及微波自愈合特性 被引量:2
20
作者 赵毅 孔斌 +1 位作者 万田宝 郑煜 《材料科学与工程学报》 CAS CSCD 北大核心 2024年第1期129-136,共8页
吸波材料具有良好的微波传热能力,可用于沥青路面微裂缝自修复。本研究选取了炭黑粉、羰基铁粉和镍锌铁氧体粉3种吸波材料替换部分矿粉制备了SMA-13吸波沥青混合料。通过车辙试验、低温弯曲破坏试验和冻融劈裂试验对比分析了不同吸波沥... 吸波材料具有良好的微波传热能力,可用于沥青路面微裂缝自修复。本研究选取了炭黑粉、羰基铁粉和镍锌铁氧体粉3种吸波材料替换部分矿粉制备了SMA-13吸波沥青混合料。通过车辙试验、低温弯曲破坏试验和冻融劈裂试验对比分析了不同吸波沥青混合料的路用性能,并采用半圆弯曲(SCB)试验研究了吸波材料类型、掺量、微波加热时间等因素对吸波沥青混合料表面温度分布和自愈合性能的影响。利用扫描电子显微镜(SEM)和X射线衍射(XRD)分析吸波材料的微观特性。结果表明,随吸波材料掺量从10%增至30%,炭黑粉沥青混合料的动稳定度和冻融劈裂强度比都呈现出逐渐上升趋势,而低温弯曲应变则表现出先增加后减小的特征;羰基铁粉沥青混合料动稳定度和低温弯曲应变均呈现先增加后减小的趋势,而冻融劈裂强度比表现出逐渐减小的特征;镍锌铁氧体粉沥青混合料动稳定度和低温弯曲应变均呈现逐渐减小趋势,而冻融劈裂强度比则与之相反。吸波沥青混合料的表面温度随着吸波材料掺量和微波加热时间的增加而逐渐上升,能够快速达到沥青混合料裂缝面的愈合温度,从而增强沥青混合料的微波自愈合性能。 展开更多
关键词 吸波材料 沥青混合料 路用性能 微波加热 自愈合特性
下载PDF
上一页 1 2 171 下一页 到第
使用帮助 返回顶部