Peach fruits [Prumus persica (L.) Batsch, cv. Yuhuasanhao] were used as materials to investigate the changes of reactive oxygen species (ROS) and related enzymes in mitochondria respiration during storage and then...Peach fruits [Prumus persica (L.) Batsch, cv. Yuhuasanhao] were used as materials to investigate the changes of reactive oxygen species (ROS) and related enzymes in mitochondria respiration during storage and then their influence on senescence of harvested Peach fruits was studied. The results showed that low temperature (5℃) strongly inhibited the reduction of firmness and the increase in respiration rate. During storage at ambient temperature (20℃), ROS had a cumulative process while malondialdehye (MDA) content continued to increase in associated with enhanced membrane lipid peroxidation. Lipoxygenase (LOX) activity was strongly inhibited under the low temperature condition. The activities of succinic dehydrogenase (SDH), cytochrome C oxidase (CCO), and Ca^2+-ATPase declined to a certain extent at ambient temperature, while they showed higher activities at low temperature, which may be related to lower membrane lipid peroxidation at low temperature. Higher Ca^2+ content at ambient temperature may be responsible for impairment of mitochondrial function, thus, leading to fruit senescence. The results showed that under low temperature condition, the low accumulation of ROS and the low level of membrane lipid peroxidation could maintain the function of mitochondria that would help to delay the senescence of peach fruits. These suggested a close relationship existed between ROS metabolism and mitochondrial respiration. It can be inferred that the low temperature helps to delay senescence of peach fruits via suppression of ROS and related enzymes, maintain better homeostasis of Ca^2+ in mitochondria and thus better mitochondrial functions.展开更多
Rhizopus rot of peach fruits could be significantly suppressed by Pichia membranefaciens. Polyphenol oxidase (PPO), peroxidase (POD) and phenylalanine ammonium-lyase (PAL) activities induced by inoculation with P. mem...Rhizopus rot of peach fruits could be significantly suppressed by Pichia membranefaciens. Polyphenol oxidase (PPO), peroxidase (POD) and phenylalanine ammonium-lyase (PAL) activities induced by inoculation with P. membrane faciens or R. stolonifer were studied in postharvest peach fruits. The activities of PPO and PAL in peaches increased significantly after being inoculated with P. membrane faciens + R. stolonifer by 24 h, the activities maintained at a high level throughout the experiment. Under the condition of infected with R. stolonifer alone, activity of PPO and PAL could also increased, but the levels were lower than those treated with P. membrane faciens+ R. stolonifer. However, fruits inoculaed with P. membrane-faciens + R. stolonifer or R. stolonifer alone did not stimulated POD activity. The results suggest that the activation of these defense enzymes is involved in the action of P. membrane faciens against R. stolonifer.展开更多
The fruits of peach cultivar Yuhua 3 were used as materials to investigate the changes of active oxygen and related enzymes in mitochondria respiratory metabolism during ripening of peach fruit, involving their influe...The fruits of peach cultivar Yuhua 3 were used as materials to investigate the changes of active oxygen and related enzymes in mitochondria respiratory metabolism during ripening of peach fruit, involving their influence on the proceeding of peach fruit senescence. The results showed that the large decrease in firmness occurred between maturity II and IV. The decrease in firmness coincided with an increase in respiratory intensity. Obvious peaks of respiratory intensity lagging to the rapid change of fruit firmness could be shown during peach ripening. Reactive oxygen species (ROS) had a cumulative process and positively correlated with respiratory intensity. During peach ripening, the content of Ca^2+ increased, the activities of succinic dehydrogenase (SDH), cytochrome C oxidase (CCO), H+-ATPase, and Ca^2+-ATPase decreased varying in different degree at the later step of ripening. These suggested a close relationship existed between ROS metabolism and mitochondrial respiration, namely, both ROS metabolism and mitochondrial respiration probably played important roles in ripening and senescing of peach fruit.展开更多
Peach(Prunus persica Batsch‘Yuhualu’)fruit are sensitive to chilling injury(CI).Proline,polyamine(PA),and nitric oxide(NO)are important small regulators of various metabolic pathways under chilling stress that mitig...Peach(Prunus persica Batsch‘Yuhualu’)fruit are sensitive to chilling injury(CI).Proline,polyamine(PA),and nitric oxide(NO)are important small regulators of various metabolic pathways under chilling stress that mitigate CI.Ethylene is known to promote senescence and CI,while 1-methylcyclopropene(1-MCP)is an antagonist that inhibits the effects of ethylene.However,how1-MCP and ethylene affect proline,PA,and NO levels under chilling stress remains unclear.To address these questions,1-MCP(1μL·L^(−1))and ethylene(1μL·L^(−1))treatments were applied to peach fruit.Fruit were stored at 4°C for 28 d,then moved to 25°C for 3 d immediately after cold storage.Peach fruit exhibited CI symptoms after 7 d of cold storage with enhanced electrolyte leakage and malondialdehyde contents.The 1-MCP treatment significantly(P<0.05)restrained peach CI,and fruit did not exhibit CI symptoms until 14 d of cold storage.Proline and PAs in peach under chilling stress weremostly synthesized from glutamate and arginine,which were catalyzed by1-pyrroline-5-carboxylate synthetase and arginine decarboxylase,respectively.1-MCPtreated fruit exhibited higher proline and PA contents and enhanced chilling tolerance compared to the control,while ethylene-treated fruit had lower proline and PA contents and reduced chilling tolerance.Ethylene-treated fruit,which exhibited more severe CI symptoms compared to the control,had significantly(P<0.05)lower NO contents and NO synthase activities.However,NOmay not be a direct acting factor in 1-MCPinduced chilling tolerance,as 1-MCP-treated fruit had lower NO contents and NO synthase activities compared to the control.In conclusion,proline and PA clearly played direct and important roles in 1-MCP-induced peach chilling tolerance,while NO may not be actively involved.展开更多
Peach fruit easily soften and have a short storage time at normal temperature. In this study, peach fruit (Prunus persica sieb et Zucc cv. Yingqing) were picked and stored at 25 and 4℃ to investigate the senescence...Peach fruit easily soften and have a short storage time at normal temperature. In this study, peach fruit (Prunus persica sieb et Zucc cv. Yingqing) were picked and stored at 25 and 4℃ to investigate the senescence in correlation with Ca^2+- ATPase activity of microsomal membrane and lipid peroxidation during ripening and senescence. In comparison with that stored at 25~C, the fruit stored at 4℃ exhibited a higher flesh firmness, lower respiration rate, and generated the late bigger peak value of Ca^2+-ATPase activity as well as maintained the higher activity of the enzyme. Meanwhile, the lower levels of super oxygen radical (O2^-.) production and content of malondialdehyde (MDA), a product of membrane lipid peroxidation were observed. Sodium orthovanadate (SO) and erythrosin B (EB), as Ca^2+-ATPase inhibitors, could stimulate the respiration rate. The results suggested that the slower senescence rate of peach fruit was closely related to the higher peak value and longer duration of Ca^2+-ATPase activity in microsomal membrane, with the slighter membrane lipid peroxidation and lower O2^-. production rate.展开更多
Two antagonistic yeasts, Thichosporon pullulans and Cryptococcus laurentii, were investigated for their biocontrol potential to blue mold rot and rhizopus rot on harvested peach fruits(Prunus persica L. Batsch, cv. Ok...Two antagonistic yeasts, Thichosporon pullulans and Cryptococcus laurentii, were investigated for their biocontrol potential to blue mold rot and rhizopus rot on harvested peach fruits(Prunus persica L. Batsch, cv. Okubao), alone or in combination with a low dose of iprodione(50 μg ml-1). The results indicated that T. pullulans and C. laurentii were effective at reducing disease incidence and severity of blue mold rot and rhizopus rot in peach fruits. Biocontrol efficacy of C. laurentii and T. pullulans were significantly enhanced by combination with a low dose of iprodione(50 μg ml-1)against blue mold and rhizopus rot in peach fruits. T. pullulans and C. laurentii combined with a low dose of iprodione(50 μg ml-1)resulted in better disease control than either iprodione or the yeasts used alone. Dipping fruits in suspensions of antagonist cells showed the similar control effect as the treatment with iprodione(500μg ml-1).展开更多
On the basis of referring plenty of literatures, we summarized the research advance in effects of nitrogen on the internal quality of peach fruit. Most studies have shown that proper nitrogen application can improve i...On the basis of referring plenty of literatures, we summarized the research advance in effects of nitrogen on the internal quality of peach fruit. Most studies have shown that proper nitrogen application can improve internal quality of fruit, and excessive nitrogen application can reduce soluble solid and sugar contents of fruit, increase organic acid content, reduce fruit aroma, increase protein and amino acid contents, and increase or reduce vitamin C content. Relevant issues were discussed.展开更多
Objectives:This work intended to identify candidate C2H2 genes participating in low-temperature conditioning(LTC)-alleviated postharvest chilling injury of peach fruit.Materials and Methods:For LTC treatment,fruit wer...Objectives:This work intended to identify candidate C2H2 genes participating in low-temperature conditioning(LTC)-alleviated postharvest chilling injury of peach fruit.Materials and Methods:For LTC treatment,fruit were pre-stored at 10℃for 5 d and then transferred to 0℃storage.Fruit firmness was measured by a hardness tester.H_(2)O_(2)content was determined by luminosity measurement model using a multifunctional enzyme labeler.Identification of C2H2 family members was performed by HMMSCAN according to peach genome.The cis-acting element of gene promoters was analyzed using the Plant CARE website.Weighted gene coexpression network analysis(WGCNA)was performed by the WGCNA package in the BMK Cloud platform.Results:LTC treatment decreased flesh browning rate and H_(2)O_(2)production of‘Beijing No.9’peach.Transcription factor identification of differentially expressed genes in 0℃and the LTC treatment indicated that peach C2H2 participated in the regulation of chilling injury.A total of 47 C2H2 genes were identified based on peach genome.Real-time quantitative polymerase chain reaction(qRT-PCR),phylogenetic analysis and promoter cis-acting element analysis revealed that ZFP21 was involved in the regulation of LTC-alleviated chilling injury in peach.WGCNA and dual luciferase assay suggested that ZFP21 participated in LTC-alleviated chilling injury by downregulating the expression of reactive oxygen species-related genes Rboh.Conclusions:Our investigation,based on genome and RNA-seq,revealed that ZFP21 was involved in LTC treatment-alleviated chilling injury of peach fruit.This work is useful for the identification of peach cold tolerance-related genes and the study of C2H2 family in peach.展开更多
Peach(Prunus persica cv. Dajiubao) was chosen as a model to clarify the roles of IAA and ABA during the fruit ripening process. Seventy days after flowering(DAF), the fruits were treated with IAA and ABA(0.1 mmol·...Peach(Prunus persica cv. Dajiubao) was chosen as a model to clarify the roles of IAA and ABA during the fruit ripening process. Seventy days after flowering(DAF), the fruits were treated with IAA and ABA(0.1 mmol·L-1 and 1 mmol·L-1, respectively) and with the IAA transporter inhibitor(NPA) and the ABA biosynthesis inhibitor(NDGA). IAA decreased the fruit ABA concentration, and increased ethylene concentration, leading to fruit(70 DAF) softening and coloration. NPA had the opposite effect. ABA decreased IAA and ethylene concentrations, leading to fruit hardness and lack of color. NDGA had similar effects as with IAA application. A q PCR analysis indicated that in immature fruits, the expression levels of ethylene biosynthesis and signaling genes(PpACS, PpACO, PpETR, PpERF2), anthocyanin biosynthesis genes(PpCHS, PpDFR, PpF3 H, PpUFGT), cell wall softening genes(PpEXP1, PpEXP2, PpPG2, PpPME), and auxin biosynthesis genes(PpPIN, PpTIR1) were upregulated by IAA application but were inhibited by NPA. In contrast, these ripening-related genes were downregulated by ABA application, but upregulated by NDGA. Generally, the immature fruit ripening process requires a high IAA concentration to generate a large amount of ethylene. ABA appeared to modulate ripening through interference not only with ethylene and cell wall related genes but also with auxin-related genes.展开更多
We conducted a two-year study of deficit irrigation impact on peach yield and quality in semi-arid northwest China. Over two years, four-year-old peach trees were irrigated at 100, 75, 50 and 25% of peach evapotranspi...We conducted a two-year study of deficit irrigation impact on peach yield and quality in semi-arid northwest China. Over two years, four-year-old peach trees were irrigated at 100, 75, 50 and 25% of peach evapotranspiration (ETc), here, ETc= Coefficient (Kc)×Local reference evapotranspiration (ET0). During the April-July fruit production season we measured root zone soil water depletion, sap flow velocity, net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), water use efficiency (WUE=Pn/Tr), fruit quality, and yield under a mobile rain-out shelter. Increased soil water depletion reasonably mirrored decreasing irrigation rates both years, causing progressively greater water stress. Progressive water stress lowered Gs, which in turn translated into lower T as measured by sap flow. However, mild deficit irrigation (75% ETc) constricted T more than Pn. Pn was not different between 100 and 75% ETc treatments in both years, and it decreased only 5-8% in June with higher temperature than that in May with cooler temperature. Concurrently under 75% ETc treatment, was reduced, and WUE was up to 13% higher than that under 100% ETc treatment. While total fruit yield was not different under the two treatments, because 75% ETc treatment had fewer but larger fruit than 100% ETc trees, suggesting mild water stress thinned fruit load. By contrast, sharply decreased T and Pn of the driest treatments (50 and 25% ETo) increased WUE, but less carbon uptake impacted total fruit yield, resulting 13 and 33% lower yield compared to that of 100% ETc treatment. Irrigation rates affected fruit quality, particularly between the 100 and 75% ETc trees. Fewer but larger fruit in the mildly water stressed trees (75% ETc) resulted in more soluble solids and vitamin C, firmer fruit, and improved sugar:acid ratio and fruit color compared to the 100% ETo treatment. Overall, trees deficit irrigated at 75% ETc maintained yield while improving fruit quality and using less water.展开更多
This experiment was conducted to study the effect of foliar spray of micronutrients on quality of peach fruits at Horticulture Farm, University of Agriculture Peshawar during 2010. The experiment was conducted in rand...This experiment was conducted to study the effect of foliar spray of micronutrients on quality of peach fruits at Horticulture Farm, University of Agriculture Peshawar during 2010. The experiment was conducted in randomized complete design with six treatments and four replications on peach orchards (early grand). Our pre-treatment soil analysis showed silt loam soil class, alkaline and calcareous in nature and adequate in organic matter. The soil was deficient in P, Zn, Fe and B, whereas adequate in Mn and Cu. The fruit quality was evaluated and maximum fruit length, diameter and yield were noted in T6 (Zn + Cu + Fe + Mn + B). The juice pH decreased and the juice acidity increased in a linear fashion after foliar spray of micronutrients. The total soluble solids of fresh fruit juice ranged 7.01%-8.88% and vitamin C ranged from 4.80%-7.90% after foliar spray. So the foliar spray of micronutrients significantly (P ≤ 0.05) affected the quality of peach fruit.展开更多
Zhaohui peaches(Prunus persica Batsch)were treated with 0(CK), 1, 10 or 100 μmol L-1 methyl jasmonate(MeJA)vapor at 20℃ for 24 h before stored at 0℃ for 35 d. The untreated fruits showed chilling injury(CD symptoms...Zhaohui peaches(Prunus persica Batsch)were treated with 0(CK), 1, 10 or 100 μmol L-1 methyl jasmonate(MeJA)vapor at 20℃ for 24 h before stored at 0℃ for 35 d. The untreated fruits showed chilling injury(CD symptoms after 4 wk of storage, as indicated by increased fruit firmness and reduced ex-tractable juice, which is referred as leatheriness. Treatment with 1 and 10 μmol L-1 MeJA promoted normal ripening and softening, maintained higher levels of extractable juice, titratable acidity, pectinesterase(PE)and polygalacturonase(PC)activities, inhibited increases in fruit fresh weight loss, decay incidence, electrolyte leakage and MDA content, and improved color development, thereby preventing chilling injury symptoms development and maintaining edible quality. MeJA treatment also delayed the climacteric rise in respiratory rate, but promoted ethylene production during the later period of cold storage, suggesting that ethylene may involve in CI development of peaches. These results indicate that 1 and 10 μmol L-1 MeJA treatments could be used to reduce CI development and decay incidence in peaches.展开更多
基金funded by the National Natural Science Fundation of China (30840016)the Natural Science Fundation of Jiangsu Province, China (BK 2010310)the Natural Science Fundation for Colleges and Universities in Jiangsu Province, China (10KJB550004)
文摘Peach fruits [Prumus persica (L.) Batsch, cv. Yuhuasanhao] were used as materials to investigate the changes of reactive oxygen species (ROS) and related enzymes in mitochondria respiration during storage and then their influence on senescence of harvested Peach fruits was studied. The results showed that low temperature (5℃) strongly inhibited the reduction of firmness and the increase in respiration rate. During storage at ambient temperature (20℃), ROS had a cumulative process while malondialdehye (MDA) content continued to increase in associated with enhanced membrane lipid peroxidation. Lipoxygenase (LOX) activity was strongly inhibited under the low temperature condition. The activities of succinic dehydrogenase (SDH), cytochrome C oxidase (CCO), and Ca^2+-ATPase declined to a certain extent at ambient temperature, while they showed higher activities at low temperature, which may be related to lower membrane lipid peroxidation at low temperature. Higher Ca^2+ content at ambient temperature may be responsible for impairment of mitochondrial function, thus, leading to fruit senescence. The results showed that under low temperature condition, the low accumulation of ROS and the low level of membrane lipid peroxidation could maintain the function of mitochondria that would help to delay the senescence of peach fruits. These suggested a close relationship existed between ROS metabolism and mitochondrial respiration. It can be inferred that the low temperature helps to delay senescence of peach fruits via suppression of ROS and related enzymes, maintain better homeostasis of Ca^2+ in mitochondria and thus better mitochondrial functions.
基金the grants fromthe National Natural Science Foundation of China(NNSF-30170663) the Chinese Academy of Sciences.
文摘Rhizopus rot of peach fruits could be significantly suppressed by Pichia membranefaciens. Polyphenol oxidase (PPO), peroxidase (POD) and phenylalanine ammonium-lyase (PAL) activities induced by inoculation with P. membrane faciens or R. stolonifer were studied in postharvest peach fruits. The activities of PPO and PAL in peaches increased significantly after being inoculated with P. membrane faciens + R. stolonifer by 24 h, the activities maintained at a high level throughout the experiment. Under the condition of infected with R. stolonifer alone, activity of PPO and PAL could also increased, but the levels were lower than those treated with P. membrane faciens+ R. stolonifer. However, fruits inoculaed with P. membrane-faciens + R. stolonifer or R. stolonifer alone did not stimulated POD activity. The results suggest that the activation of these defense enzymes is involved in the action of P. membrane faciens against R. stolonifer.
基金supported by the National Natural Science Fundation of China (30840016,30570134)the Key Technologies R&D Program of China during the 11th Five-Year Plan period (2006BAD22B01)the Natural Science Fundation of Jiangsu Province,China(BK 2007076)
文摘The fruits of peach cultivar Yuhua 3 were used as materials to investigate the changes of active oxygen and related enzymes in mitochondria respiratory metabolism during ripening of peach fruit, involving their influence on the proceeding of peach fruit senescence. The results showed that the large decrease in firmness occurred between maturity II and IV. The decrease in firmness coincided with an increase in respiratory intensity. Obvious peaks of respiratory intensity lagging to the rapid change of fruit firmness could be shown during peach ripening. Reactive oxygen species (ROS) had a cumulative process and positively correlated with respiratory intensity. During peach ripening, the content of Ca^2+ increased, the activities of succinic dehydrogenase (SDH), cytochrome C oxidase (CCO), H+-ATPase, and Ca^2+-ATPase decreased varying in different degree at the later step of ripening. These suggested a close relationship existed between ROS metabolism and mitochondrial respiration, namely, both ROS metabolism and mitochondrial respiration probably played important roles in ripening and senescing of peach fruit.
基金This work was supported by the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20140483)China Postdoctoral Science Foundation(Grant No.2014M560451).
文摘Peach(Prunus persica Batsch‘Yuhualu’)fruit are sensitive to chilling injury(CI).Proline,polyamine(PA),and nitric oxide(NO)are important small regulators of various metabolic pathways under chilling stress that mitigate CI.Ethylene is known to promote senescence and CI,while 1-methylcyclopropene(1-MCP)is an antagonist that inhibits the effects of ethylene.However,how1-MCP and ethylene affect proline,PA,and NO levels under chilling stress remains unclear.To address these questions,1-MCP(1μL·L^(−1))and ethylene(1μL·L^(−1))treatments were applied to peach fruit.Fruit were stored at 4°C for 28 d,then moved to 25°C for 3 d immediately after cold storage.Peach fruit exhibited CI symptoms after 7 d of cold storage with enhanced electrolyte leakage and malondialdehyde contents.The 1-MCP treatment significantly(P<0.05)restrained peach CI,and fruit did not exhibit CI symptoms until 14 d of cold storage.Proline and PAs in peach under chilling stress weremostly synthesized from glutamate and arginine,which were catalyzed by1-pyrroline-5-carboxylate synthetase and arginine decarboxylase,respectively.1-MCPtreated fruit exhibited higher proline and PA contents and enhanced chilling tolerance compared to the control,while ethylene-treated fruit had lower proline and PA contents and reduced chilling tolerance.Ethylene-treated fruit,which exhibited more severe CI symptoms compared to the control,had significantly(P<0.05)lower NO contents and NO synthase activities.However,NOmay not be a direct acting factor in 1-MCPinduced chilling tolerance,as 1-MCP-treated fruit had lower NO contents and NO synthase activities compared to the control.In conclusion,proline and PA clearly played direct and important roles in 1-MCP-induced peach chilling tolerance,while NO may not be actively involved.
基金This work was supported by the National Natural Science Foundation of China (30270933)Natural Science Foundation of Hebei Province, China (303600).
文摘Peach fruit easily soften and have a short storage time at normal temperature. In this study, peach fruit (Prunus persica sieb et Zucc cv. Yingqing) were picked and stored at 25 and 4℃ to investigate the senescence in correlation with Ca^2+- ATPase activity of microsomal membrane and lipid peroxidation during ripening and senescence. In comparison with that stored at 25~C, the fruit stored at 4℃ exhibited a higher flesh firmness, lower respiration rate, and generated the late bigger peak value of Ca^2+-ATPase activity as well as maintained the higher activity of the enzyme. Meanwhile, the lower levels of super oxygen radical (O2^-.) production and content of malondialdehyde (MDA), a product of membrane lipid peroxidation were observed. Sodium orthovanadate (SO) and erythrosin B (EB), as Ca^2+-ATPase inhibitors, could stimulate the respiration rate. The results suggested that the slower senescence rate of peach fruit was closely related to the higher peak value and longer duration of Ca^2+-ATPase activity in microsomal membrane, with the slighter membrane lipid peroxidation and lower O2^-. production rate.
基金supported by the National Science Fund for Distinguished Young Scholars of China(30225030)the National Natural Science Foundation of China(30170663).
文摘Two antagonistic yeasts, Thichosporon pullulans and Cryptococcus laurentii, were investigated for their biocontrol potential to blue mold rot and rhizopus rot on harvested peach fruits(Prunus persica L. Batsch, cv. Okubao), alone or in combination with a low dose of iprodione(50 μg ml-1). The results indicated that T. pullulans and C. laurentii were effective at reducing disease incidence and severity of blue mold rot and rhizopus rot in peach fruits. Biocontrol efficacy of C. laurentii and T. pullulans were significantly enhanced by combination with a low dose of iprodione(50 μg ml-1)against blue mold and rhizopus rot in peach fruits. T. pullulans and C. laurentii combined with a low dose of iprodione(50 μg ml-1)resulted in better disease control than either iprodione or the yeasts used alone. Dipping fruits in suspensions of antagonist cells showed the similar control effect as the treatment with iprodione(500μg ml-1).
基金Supported by Key Technology R&D Program of Hebei Province(16226313D-3)Innovation Project of Hebei Academy of Agriculture and Forestry Sciences(2019-3-5-1,F18C10001,2018100201)Shijiazhuang Comprehensive Experimental Station of China Agro-industry(Peach Industry)Research System(CARS-31-Z-2)
文摘On the basis of referring plenty of literatures, we summarized the research advance in effects of nitrogen on the internal quality of peach fruit. Most studies have shown that proper nitrogen application can improve internal quality of fruit, and excessive nitrogen application can reduce soluble solid and sugar contents of fruit, increase organic acid content, reduce fruit aroma, increase protein and amino acid contents, and increase or reduce vitamin C content. Relevant issues were discussed.
基金supported by the Natural Science Foundation of Shandong Province,China(No.ZR2021QC100)Open Project Foundation of Shandong(Linyi)Institute of Modern Agriculture,Zhejiang University(No.ZDNY-2020-FWLY02002)+2 种基金Modern Agricultural Industry Technology System of Shandong Province(No.SDAIT-06-08)Innovation and Entrepreneurship Project for College Students(X202210452106)the Innovation Team of Youth Technology Project of High School in Shandong Province(2021KJ055).
文摘Objectives:This work intended to identify candidate C2H2 genes participating in low-temperature conditioning(LTC)-alleviated postharvest chilling injury of peach fruit.Materials and Methods:For LTC treatment,fruit were pre-stored at 10℃for 5 d and then transferred to 0℃storage.Fruit firmness was measured by a hardness tester.H_(2)O_(2)content was determined by luminosity measurement model using a multifunctional enzyme labeler.Identification of C2H2 family members was performed by HMMSCAN according to peach genome.The cis-acting element of gene promoters was analyzed using the Plant CARE website.Weighted gene coexpression network analysis(WGCNA)was performed by the WGCNA package in the BMK Cloud platform.Results:LTC treatment decreased flesh browning rate and H_(2)O_(2)production of‘Beijing No.9’peach.Transcription factor identification of differentially expressed genes in 0℃and the LTC treatment indicated that peach C2H2 participated in the regulation of chilling injury.A total of 47 C2H2 genes were identified based on peach genome.Real-time quantitative polymerase chain reaction(qRT-PCR),phylogenetic analysis and promoter cis-acting element analysis revealed that ZFP21 was involved in the regulation of LTC-alleviated chilling injury in peach.WGCNA and dual luciferase assay suggested that ZFP21 participated in LTC-alleviated chilling injury by downregulating the expression of reactive oxygen species-related genes Rboh.Conclusions:Our investigation,based on genome and RNA-seq,revealed that ZFP21 was involved in LTC treatment-alleviated chilling injury of peach fruit.This work is useful for the identification of peach cold tolerance-related genes and the study of C2H2 family in peach.
基金supported by the National Natural Science Foundation of China (51678082)
文摘Peach(Prunus persica cv. Dajiubao) was chosen as a model to clarify the roles of IAA and ABA during the fruit ripening process. Seventy days after flowering(DAF), the fruits were treated with IAA and ABA(0.1 mmol·L-1 and 1 mmol·L-1, respectively) and with the IAA transporter inhibitor(NPA) and the ABA biosynthesis inhibitor(NDGA). IAA decreased the fruit ABA concentration, and increased ethylene concentration, leading to fruit(70 DAF) softening and coloration. NPA had the opposite effect. ABA decreased IAA and ethylene concentrations, leading to fruit hardness and lack of color. NDGA had similar effects as with IAA application. A q PCR analysis indicated that in immature fruits, the expression levels of ethylene biosynthesis and signaling genes(PpACS, PpACO, PpETR, PpERF2), anthocyanin biosynthesis genes(PpCHS, PpDFR, PpF3 H, PpUFGT), cell wall softening genes(PpEXP1, PpEXP2, PpPG2, PpPME), and auxin biosynthesis genes(PpPIN, PpTIR1) were upregulated by IAA application but were inhibited by NPA. In contrast, these ripening-related genes were downregulated by ABA application, but upregulated by NDGA. Generally, the immature fruit ripening process requires a high IAA concentration to generate a large amount of ethylene. ABA appeared to modulate ripening through interference not only with ethylene and cell wall related genes but also with auxin-related genes.
基金the financial support from the National High-Tech R&D Program,China(863 Program,2011AA100504)the National Natural Science Foundation of China(51579211)+3 种基金the Key Research Project of Universities in Henan Province,China(16A416005)the 111 Project of the Chinese Education Ministry(B12007)the Initial Fund for Doctoral Reserch of Henan University of Science and Technology,China(13480016)the China Scholarship Council and USDA Agricultural Experiment Station CRIS Project(01129)
文摘We conducted a two-year study of deficit irrigation impact on peach yield and quality in semi-arid northwest China. Over two years, four-year-old peach trees were irrigated at 100, 75, 50 and 25% of peach evapotranspiration (ETc), here, ETc= Coefficient (Kc)×Local reference evapotranspiration (ET0). During the April-July fruit production season we measured root zone soil water depletion, sap flow velocity, net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), water use efficiency (WUE=Pn/Tr), fruit quality, and yield under a mobile rain-out shelter. Increased soil water depletion reasonably mirrored decreasing irrigation rates both years, causing progressively greater water stress. Progressive water stress lowered Gs, which in turn translated into lower T as measured by sap flow. However, mild deficit irrigation (75% ETc) constricted T more than Pn. Pn was not different between 100 and 75% ETc treatments in both years, and it decreased only 5-8% in June with higher temperature than that in May with cooler temperature. Concurrently under 75% ETc treatment, was reduced, and WUE was up to 13% higher than that under 100% ETc treatment. While total fruit yield was not different under the two treatments, because 75% ETc treatment had fewer but larger fruit than 100% ETc trees, suggesting mild water stress thinned fruit load. By contrast, sharply decreased T and Pn of the driest treatments (50 and 25% ETo) increased WUE, but less carbon uptake impacted total fruit yield, resulting 13 and 33% lower yield compared to that of 100% ETc treatment. Irrigation rates affected fruit quality, particularly between the 100 and 75% ETc trees. Fewer but larger fruit in the mildly water stressed trees (75% ETc) resulted in more soluble solids and vitamin C, firmer fruit, and improved sugar:acid ratio and fruit color compared to the 100% ETo treatment. Overall, trees deficit irrigated at 75% ETc maintained yield while improving fruit quality and using less water.
文摘This experiment was conducted to study the effect of foliar spray of micronutrients on quality of peach fruits at Horticulture Farm, University of Agriculture Peshawar during 2010. The experiment was conducted in randomized complete design with six treatments and four replications on peach orchards (early grand). Our pre-treatment soil analysis showed silt loam soil class, alkaline and calcareous in nature and adequate in organic matter. The soil was deficient in P, Zn, Fe and B, whereas adequate in Mn and Cu. The fruit quality was evaluated and maximum fruit length, diameter and yield were noted in T6 (Zn + Cu + Fe + Mn + B). The juice pH decreased and the juice acidity increased in a linear fashion after foliar spray of micronutrients. The total soluble solids of fresh fruit juice ranged 7.01%-8.88% and vitamin C ranged from 4.80%-7.90% after foliar spray. So the foliar spray of micronutrients significantly (P ≤ 0.05) affected the quality of peach fruit.
基金supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Education Ministry of China(2002-247)the Natural Science Foundation of Jiangsu Province,China(BK2001206).
文摘Zhaohui peaches(Prunus persica Batsch)were treated with 0(CK), 1, 10 or 100 μmol L-1 methyl jasmonate(MeJA)vapor at 20℃ for 24 h before stored at 0℃ for 35 d. The untreated fruits showed chilling injury(CD symptoms after 4 wk of storage, as indicated by increased fruit firmness and reduced ex-tractable juice, which is referred as leatheriness. Treatment with 1 and 10 μmol L-1 MeJA promoted normal ripening and softening, maintained higher levels of extractable juice, titratable acidity, pectinesterase(PE)and polygalacturonase(PC)activities, inhibited increases in fruit fresh weight loss, decay incidence, electrolyte leakage and MDA content, and improved color development, thereby preventing chilling injury symptoms development and maintaining edible quality. MeJA treatment also delayed the climacteric rise in respiratory rate, but promoted ethylene production during the later period of cold storage, suggesting that ethylene may involve in CI development of peaches. These results indicate that 1 and 10 μmol L-1 MeJA treatments could be used to reduce CI development and decay incidence in peaches.