With the increase in the power receiving proportion and an insufficient peak regulation capacity of the local units, the receiving-end power grid struggles to achieve peak regulation in valley time. To solve this prob...With the increase in the power receiving proportion and an insufficient peak regulation capacity of the local units, the receiving-end power grid struggles to achieve peak regulation in valley time. To solve this problem while considering the potential of the large-scale charge load of electric vehicles(EVs), an aggregator-based demand response(DR) mechanism for EVs that are participating in the peak regulation in valley time is proposed in this study. In this aggregator-based DR mechanism, the profits for the power grid’s operation and the participation willingness of the EV owners are considered. Based on the characteristics of the EV charging process and the day-ahead unit generation scheduling, a rolling unit commitment model with the DR is established to maximize the social welfare. In addition, to improve the efficiency of the optimization problem solving process and to achieve communication between the independent system operator(ISO) and the aggregators, the clustering algorithm is utilized to extract typical EV charging patterns. Finally, the feasibility and benefits of the aggregator-based DR mechanism for saving the costs and reducing the peak-valley difference of the receiving-end power grid are verified through case studies.展开更多
Due to the shortage of fossil energy and the pollution caused by combustion of fossil fuels,the proportion of renewable energy in power systems is gradually increasing across the world.Accordingly,the capacity of powe...Due to the shortage of fossil energy and the pollution caused by combustion of fossil fuels,the proportion of renewable energy in power systems is gradually increasing across the world.Accordingly,the capacity of power systems to accommodate renewable energy must be improved.However,integration of a large amount of renewable energy into power grids may result in network congestion.Hence,in this study,optimal transmission switching(OTS)is considered as an important method of accommodating renewable energy.It is incorporated into the operation of a power grid along with deep peak regulation of thermal power units,forming an interactive mode of coordinated operation of source and network.A stochastic unit commitment model consider!ng deep peak regulation and OTS is established,and the role of OTS in promoting the accommodation of renewable energy is analyzed quantitatively.The results of case studies involving the IEEE 30-bus system demonstrate that OTS can enable utilization of the potential of deep peak regulation and facilitate the accommodation of renewable energy.展开更多
Northern China has rich wind power and photovoltaic renewable resources. Combined Heat and Power (CHP) Units to meet the load demand and limit its peaking capacity in winter, to a certain extent, it results in structu...Northern China has rich wind power and photovoltaic renewable resources. Combined Heat and Power (CHP) Units to meet the load demand and limit its peaking capacity in winter, to a certain extent, it results in structural problems of wind-solar power and thermoelectric. To solve these problems, this paper proposes a plurality of units together to ensure supply of heat load on the premise, by building a thermoelectric power peaking considering thermal load unit group dynamic scheduling model, to achieve the potential of different thermoelectric properties peaking units of the excavation. Simulation examples show, if the unit group exists obvious relationship thermoelectric individual differences, the thermal load dynamic scheduling can be more significantly improved overall performance peaking unit group, effectively increase clean energy consumptive.展开更多
基金supported by the Science and Technology Project from the State Grid Shanghai Municipal Electric Power Company of China (52094019006U)the Shanghai Rising-Star Program (18QB1400200)。
文摘With the increase in the power receiving proportion and an insufficient peak regulation capacity of the local units, the receiving-end power grid struggles to achieve peak regulation in valley time. To solve this problem while considering the potential of the large-scale charge load of electric vehicles(EVs), an aggregator-based demand response(DR) mechanism for EVs that are participating in the peak regulation in valley time is proposed in this study. In this aggregator-based DR mechanism, the profits for the power grid’s operation and the participation willingness of the EV owners are considered. Based on the characteristics of the EV charging process and the day-ahead unit generation scheduling, a rolling unit commitment model with the DR is established to maximize the social welfare. In addition, to improve the efficiency of the optimization problem solving process and to achieve communication between the independent system operator(ISO) and the aggregators, the clustering algorithm is utilized to extract typical EV charging patterns. Finally, the feasibility and benefits of the aggregator-based DR mechanism for saving the costs and reducing the peak-valley difference of the receiving-end power grid are verified through case studies.
基金the National Natural Science Foundation of China(No.U1966204)the China State Key Lab.of Power System(SKJLD19KM09).
文摘Due to the shortage of fossil energy and the pollution caused by combustion of fossil fuels,the proportion of renewable energy in power systems is gradually increasing across the world.Accordingly,the capacity of power systems to accommodate renewable energy must be improved.However,integration of a large amount of renewable energy into power grids may result in network congestion.Hence,in this study,optimal transmission switching(OTS)is considered as an important method of accommodating renewable energy.It is incorporated into the operation of a power grid along with deep peak regulation of thermal power units,forming an interactive mode of coordinated operation of source and network.A stochastic unit commitment model consider!ng deep peak regulation and OTS is established,and the role of OTS in promoting the accommodation of renewable energy is analyzed quantitatively.The results of case studies involving the IEEE 30-bus system demonstrate that OTS can enable utilization of the potential of deep peak regulation and facilitate the accommodation of renewable energy.
文摘Northern China has rich wind power and photovoltaic renewable resources. Combined Heat and Power (CHP) Units to meet the load demand and limit its peaking capacity in winter, to a certain extent, it results in structural problems of wind-solar power and thermoelectric. To solve these problems, this paper proposes a plurality of units together to ensure supply of heat load on the premise, by building a thermoelectric power peaking considering thermal load unit group dynamic scheduling model, to achieve the potential of different thermoelectric properties peaking units of the excavation. Simulation examples show, if the unit group exists obvious relationship thermoelectric individual differences, the thermal load dynamic scheduling can be more significantly improved overall performance peaking unit group, effectively increase clean energy consumptive.