The microstructure evolution and impact-toughness variation of heat-affected zone(HAZ)in X80 highstrain pipeline steel were investigated via a welding thermal-simulation technique,Charpy impact tests,and scanning el...The microstructure evolution and impact-toughness variation of heat-affected zone(HAZ)in X80 highstrain pipeline steel were investigated via a welding thermal-simulation technique,Charpy impact tests,and scanning electron microscopy observations under different welding heat inputs and peak temperatures.The results indicate that when heat input was between 17 and 25kJ·cm^(-1),the coarse-grained heat-affected zone showed improved impact toughness.When the heat input was increased further,the martensite-austenite(M-A)islands transformed from fine lath into a massive block.Therefore,impact toughness was substantially reduced.When the heat input was 20kJ·cm^(-1) and the peak temperature of the first thermal cycle was between 900 and 1300°C,a higher impact toughness was obtained.When heat input was 20kJ·cm^(-1) and the peak temperature of the first thermal cycle was 1300°C,the impact toughness value at the second peak temperature of 900°C was higher than that at the second peak temperature of 800°C because of grain refining and uniformly dispersed M-A constituents in the matrix of bainite.展开更多
文摘The microstructure evolution and impact-toughness variation of heat-affected zone(HAZ)in X80 highstrain pipeline steel were investigated via a welding thermal-simulation technique,Charpy impact tests,and scanning electron microscopy observations under different welding heat inputs and peak temperatures.The results indicate that when heat input was between 17 and 25kJ·cm^(-1),the coarse-grained heat-affected zone showed improved impact toughness.When the heat input was increased further,the martensite-austenite(M-A)islands transformed from fine lath into a massive block.Therefore,impact toughness was substantially reduced.When the heat input was 20kJ·cm^(-1) and the peak temperature of the first thermal cycle was between 900 and 1300°C,a higher impact toughness was obtained.When heat input was 20kJ·cm^(-1) and the peak temperature of the first thermal cycle was 1300°C,the impact toughness value at the second peak temperature of 900°C was higher than that at the second peak temperature of 800°C because of grain refining and uniformly dispersed M-A constituents in the matrix of bainite.