While hydropower is generally considered a clean energy source, it is important to recognize that their waste can still contribute to greenhouse gas emissions (GHG). The purpose of this study is to assess the carbon f...While hydropower is generally considered a clean energy source, it is important to recognize that their waste can still contribute to greenhouse gas emissions (GHG). The purpose of this study is to assess the carbon footprint associated with the waste sector throughout the operational phase of the Nam Theun 2 hydropower plant in Laos. Understanding the environmental impact of the waste sector is crucial for ensuring the plant’s sustainability. This study utilizes the theoretical estimation method recommended in the 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, as well as the Requirements for Specification with guidance at the organization level for quantification and reporting of GHG emissions and removals. We emphasize the significance of implementing sustainable waste management practices to reduce GHG emissions and minimize the environmental impact of hydropower operations. By conducting a comprehensive analysis, this paper also provides insights into the environmental implications of waste management in hydropower plants and identifies strategies to mitigate the carbon footprint in the waste sector. The findings contribute to a better understanding of the environmental sustainability of hydropower plants and provide valuable guidance for policymakers, energy producers, and environmental practitioners involved in hydropower plant design and operation.展开更多
Human activities have impacted 77%of the terrestrial ecosystems(excluding Antarctica),and the remaining areas are becoming increasingly endangered.Mapping spatiotemporal dynamics of Human Footprint has been used to ev...Human activities have impacted 77%of the terrestrial ecosystems(excluding Antarctica),and the remaining areas are becoming increasingly endangered.Mapping spatiotemporal dynamics of Human Footprint has been used to evaluate the cumulative interference on terrestrial environments globally.However,fences and hydropower,two widespread and rapidly expanding infrastructures,have not been considered regarding Human Footprint,despite their complicated and extensive effects on ecosystem functioning and species survival.Previous work has proved that fences increase habitat fragmentation,disrupt migratory routes,inadvertently trap and kill wildlife,and hinder genetic exchange.Hydropower construction also caused habitat loss,fragmentation,and degradation.These impacts have received global concern,but fences around the world are difficult to be detected due to the limitations of current cartographic technologies.Furthermore,the effect of hydropower on the terrestrial environment has been underestimated,making the research on this topic at a global scale still in its infancy.Therefore,building an observation network of global fences and hydropower is a necessary step to move forward in the assessment of the impact of human activities on our planet,but also to better provide scientific support for policy-making regarding global biodiversity conservation,the identification of protected areas,and the prioritization of ecological restoration areas.展开更多
Hydroelectric reservoirs have environmental impacts as many other sources of energy. Regarding hydropower, these effects include flooding cultivated and forest areas, changes in water quality, negative impacts on wate...Hydroelectric reservoirs have environmental impacts as many other sources of energy. Regarding hydropower, these effects include flooding cultivated and forest areas, changes in water quality, negative impacts on water biodiversity, conflict with indigenous people and fish migration. In the nineties, researchers put in evidence of another important impact of dam construction: the greenhouse gases generated by flooding organic matter by reservoir flooding. Scientists argue that like natural human water bodies, the hydropower reservoirs emit biogenic gases into the atmosphere. The diffusive gas flux is associated with the difference between gas partial pressure of each chemical substance considering the aquatic system and the atmosphere. Ebullition is a process where some chemical substances are not soluble in water and bubbles are formed in the sediment at the bottom of the reservoir. Ebullition is often the dominant pathway of CH<sub>4</sub> that is released from aquatic ecosystems. The phenomenon is episodic and irregular and depends mainly on hydrostatic pressure and other physical influences, such as currents, temperature gradients and the bathymetry of the water body. At hydropower reservoirs, other pathways for gas emanation to the atmosphere are the degassing by water passing through turbines of the powerhouse and the gas diffusion across the river downstream dam. This paper gives a review of the state-of-the-art and advances in the research of greenhouse gas emissions and removals from hydropower reservoirs.展开更多
Mozambique is doing well in its implementation of renewable energies (green energies), and this is a positive move as it sees to the protection of the environment, reduction of the emission of greenhouse gases, and th...Mozambique is doing well in its implementation of renewable energies (green energies), and this is a positive move as it sees to the protection of the environment, reduction of the emission of greenhouse gases, and the reduction of the country’s reliance on foreign fuels which are expensive and an economic burden on a country with an extremely high poverty index in Africa. Green energies like hydropower, solar energy and biomass are already in use with biomass leading, followed by hydropower. This paper explores and analyses the use of hydropower and biomass in Mozambique with the focus being on the extent of their use in the country and the impacts associated with their use. It also aims to look at policies that have been implemented to promote the use of these renewable sources of energy, and it discusses the success of the implementation of these policies and if they have helped in making the use of biomass and hydropower sustainable. The environmental impact of the use of green energies is minimum if compared to fossil fuels but this paper aims to show that there is concern in their use, especially the use of Biomass as there is little consideration being given to its environmental footprint. Mozambique has great potential for hydropower and bioenergy, but potential does not depict the reality as there are several issues to consider before the implementation of such in a developing country like Mozambique and this work explores the existence of issues that affect or hinder the growth and the sustainability of the use Biomass and Hydropower, and this is crucial in policy revision and implementation.展开更多
Hydropower gains increasing importance as a steerable and controllable power source in a renewable energy mix and deregulated markets. Although hydropower produces fossil-free energy, it has a significant impact on th...Hydropower gains increasing importance as a steerable and controllable power source in a renewable energy mix and deregulated markets. Although hydropower produces fossil-free energy, it has a significant impact on the local environment. This review investigates the effects of flow alterations by hydropower on the downstream river system and the possibilities to integrate these effects into hydraulic modeling. The results show that various effects of flow regulation on the ecosystem, but also social and economic effects on related communities were observed in the last decades. The application of hydraulic models for investigations of ecological effects is common. Especially hydraulic effects and effects on fish were extensively modeled with the help of hydraulic 1D- and 2D-simulations. Current applications to investigate social and economic effects integrated into hydraulic modeling are meanwhile limited. Approaches to realizing this integration are presented. Further research on the economic valuation of ecosystems and integration of social and economic effects to hydraulic models is necessary to develop holistic tools to support decision-making on sustainable hydropower.展开更多
This paper describes the present situation, construction experiences, existing problems and the principal tasks in the development of small hydropower in China.
This paper introduces the abundant hydropower resources in western region in China, the role hydropower will play in the extensive development of western region, the finished reconstruction activities, as well as the ...This paper introduces the abundant hydropower resources in western region in China, the role hydropower will play in the extensive development of western region, the finished reconstruction activities, as well as the basic thought and near and long term targets on western hydropower development.展开更多
This study attempted to use the soil and water assessment tool(SWAT), integrated with geographic information systems(GIS), for assessment of climate change impacts on hydropower generation. This methodology of climate...This study attempted to use the soil and water assessment tool(SWAT), integrated with geographic information systems(GIS), for assessment of climate change impacts on hydropower generation. This methodology of climate change impact modeling was developed and demonstrated through application to a hydropower plant in the Rio Jubones Basin in Ecuador. ArcSWAT 2012 was used to develop a model for simulating the river flow. The model parameters were calibrated and validated on a monthly scale with respect to the hydro-meteorological inputs observed from 1985 to 1991 and from 1992 to 1998, respectively. Statistical analyses produced Nash-Sutcliffe efficiencies(NSEs) of 0.66 and 0.61 for model calibration and validation, respectively, which were considered acceptable. Numerical simulation with the model indicated that climate change could alter the seasonal flow regime of the basin, and the hydropower potential could change due to the changing climate in the future.Scenario analysis indicates that, though the hydropower generation will increase in the wet season, the plant will face a significant power shortage during the dry season, up to 13.14% from the reference scenario, as a consequence of a 17% reduction of streamflow under an assumption of a 2.9℃ increase in temperature and a 15% decrease in rainfall. Overall, this study showed that hydrological processes are realistically modeled with SWAT and the model can be a useful tool for predicting the impact of climate change.展开更多
There are many fracture zones crossing the dam foundation of the Xiangjiaba Hydropower Project in southwestern China. Clastic rock is the main media of the fracture zone and has poor physical and mechanical properties...There are many fracture zones crossing the dam foundation of the Xiangjiaba Hydropower Project in southwestern China. Clastic rock is the main media of the fracture zone and has poor physical and mechanical properties. In order to investigate the creep behavior of clastic rock, triaxial creep tests were conducted using a rock servo-controlling rheological testing machine. The results show that the creep behavior of clastic rock is significant at a high level of deviatoric stress, and less time-dependent deformation occurs at high confining pressure. Based on the creep test results, the relationship between axial strain and time under different confining pressures was investigated, and the relationship between axial strain rate and deviatoric stress was also discussed. The strain rate increases rapidly, and the rock sample fails eventually under high deviatoric stress. Moreover, the creep failure mechanism under different confining pressures was analyzed. The main failure mechanism of clastic rock is plastic shear, accompanied by a significant compression and ductile dilatancy. On the other band, with the determined parameters, the Burgers creep model was used to fit the creep curves. The results indicate that the Burgers model can exactly describe the creep behavior of clastic rock in the Xiangjiaba Hydropower Project.展开更多
Jinping Ⅱ hydropower station is located in a high in-situ stress region in Southwest China. During the excavations of the transportation and drainage tunnels, more than 460 rockburst events were recorded in the trans...Jinping Ⅱ hydropower station is located in a high in-situ stress region in Southwest China. During the excavations of the transportation and drainage tunnels, more than 460 rockburst events were recorded in the transportation tunnel and 110 in the drainage tunnel, which has a serious and negative influence on the tunnels’ construction and the safety of staff and equipment. In the paper, the characters of rockburst patterns are analyzed for the transportation and drainage tunnels. The results are illustrated as follow: (1) Most of intensive rockbursts occur in the layer T2b, and continuous occurrences of rockbursts are more frequently observed than those in other layers. (2) The critical overburden depth of rockburst in the transportation tunnel is 600 m, and the length of the continuous occurrence section of rockburst is smaller than 25 m. The damaged depth of the rockburst has the tendency to increase with the increasing overburden depth, and the maximum damaged depth is over 3.5 m. (3) From east to west (west to east) in Jinping Ⅱ hydropower station, the rockburst usually takes place in the right (left) side of tunnel working face, and then the left (right) or roof of the tunnel. The total length of the continuous occurrence section of rockburst is 57.4%–62.2% of the overall rockburst length, followed by the rockbursts of flake-splitting type and other types. (4) Compared with the transportation tunnel, the intensity of rockburst in the drainage tunnel is higher while the length of the continuous occurrence section of rockburst is smaller. The rockburst section with length less than 10 m and depth of 1 m mainly occurs in the layer at a depth of 1 800–2 000 m. The influences of opening geometry and excavation method on the characteristics of the adjacent zone are great, but the influence of the stress among the tunnel group induced by excavation is relatively low.展开更多
According to site-specific environments such as high water pressures, high in-situ stresses and strong rockbursts, the design scheme of the long and deep diversion tunnels at Jinping II hydropower station was optimize...According to site-specific environments such as high water pressures, high in-situ stresses and strong rockbursts, the design scheme of the long and deep diversion tunnels at Jinping II hydropower station was optimized to ensure construction safety. New drainage tunnels were considered. Furthermore, lining structures and grouting pressures were modified during the excavation of tunnels. The construction scheme was updated dynamically based on the complex geological conditions. For instances, the diversion tunnels were first excavated by drilling and blasting method at the first stage of construction, and then by the combination method of tunnel boring machine (TBM) and drilling and blasting, and finally by drilling and blasting method. Through optimized scheme and updated construction scheme, the excavation of diversion tunnel #1 was successfully completed in June, 2011. This paper summarizes the key issues in rock mechanics associated with the construction of the long and deep diversion tunnels at Jinping II hydropower station. The experiences of design and construction obtained from this project could provide reference to similar projects.展开更多
The columnar jointed rock mass(CJR), composed of polygonal cross-sectional columns cut by several groups of joints in various directions, was exposed during the excavations of the Baihetan hydropower station, China. I...The columnar jointed rock mass(CJR), composed of polygonal cross-sectional columns cut by several groups of joints in various directions, was exposed during the excavations of the Baihetan hydropower station, China. In order to investigate the unloading performances and the stability conditions during excavation of the columns, an experimental field study was performed. Firstly, on-site investigations indicated that the geotechnical problems, including rock relaxation, cracking and collapse, were the most prominent for the CJR Class I that contains intensive joint network and the smallest column sizes.Comprehensive field tests, including deformation measurement by multi-point extensometers, ultrasonic wave testing, borehole television observation and stress monitoring of rock anchors, revealed that the time-dependent relaxation of the CJRs was marked. The practical excavation experiences for the Baihetan columnar jointed rock masses, such as blasting scheme, supporting time of shotcrete and rock bolts, were presented in the excavations of the diversion tunnels. These detailed investigations and practical construction experiences can provide helpful information for similar geotechnical works in jointed rock mass.展开更多
Large-capacity hydropower transmission from southwestern China to load centers via ultra-high voltage direct current(UHVDC) or ultra-high voltage alternating current(UHVAC) transmission lines is an important measure o...Large-capacity hydropower transmission from southwestern China to load centers via ultra-high voltage direct current(UHVDC) or ultra-high voltage alternating current(UHVAC) transmission lines is an important measure of the accommodation of large-scale hydropower in China. The East China Grid(ECG) is the main hydropower receiver of the west–east power transmission channel in China. Moreover, it has been subject to a rapidly increasing rate of hydropower integration over the past decade. Currently, large-scale outer hydropower is one of the primary ECG power sources. However, the integration of rapidly increasing outer hydropower into the power grid is subject to a series of severe drawbacks. Therefore, this study considered the load demands and hydropower transmission characteristics for the analysis of several major problems and the determination of appropriate solutions. The power supply-demand balance problem, hydropower transmission schedule problem, and peakshaving problem were considered in this study. Correspondingly, three solutions are suggested in this paper, which include coordination between the outer hydropower and local power sources, an inter-provincial power complementary operation, and the introduction of a market mechanism. The findings of this study can serve as a basis to ensure that the ECG effectively receives an increased amount of outer hydropower in the future.展开更多
Due to the nonlinearity and nonstationary of hydropower market data, a novel hybrid learning paradigm is proposed to predict hydropower consumption, by incorporating firefly algorithm (FA) into least square support ...Due to the nonlinearity and nonstationary of hydropower market data, a novel hybrid learning paradigm is proposed to predict hydropower consumption, by incorporating firefly algorithm (FA) into least square support vector regression (LSSVR), i.e., FA-based LSSVR model. In the novel model, the powerful and effective artificial intelligence (AI) technique, i.e., LSSVR, is employed to forecast hydropower consumption. Furthermore, a promising AI optimization tool, i.e., FA, is espe- cially introduced to address the crucial but difficult task of parameters determination in LSSVR (e.g., hyper and kernel function parameters). With the Chinese hydropower consumption as sample data, the empirical study has statistically confirmed the superiority of the novel FA-based LSSVR model to other benchmark models (including existing popular traditional econometric models, AI models and similar hybrid LSSVRs with other popular parameter searching tools)~ in terms of level and direc- tional accuracy. The empirical results also imply that the hybrid FA-based LSSVR learning paradigm with powerful forecasting tool and parameters optimization method can be employed as an effective forecasting tool for not only hydropower consumption but also other complex data.展开更多
The capacity and size of hydro-generator units are increasing with the rapid development of hydroelectric enterprises, and the vibration of the powerhouse structure has increasingly become a major problem. Field testi...The capacity and size of hydro-generator units are increasing with the rapid development of hydroelectric enterprises, and the vibration of the powerhouse structure has increasingly become a major problem. Field testing is an important method for research on dynamic identification and vibration mechanisms. Research on optimal sensor placement has become a very important topic due to the need to obtain effective testing information from limited test resources. To overcome inadequacies of the present methods, this paper puts forward the triaxial effective independence driving-point residue (EfI3-DPR3) method for optimal sensor placement. The Efl3-DPR3 method can incorporate both the maximum triaxial modal kinetic energy and linear independence of the triaxial target modes at the selected nodes. It was applied to the optimal placement oftriaxial sensors for vibration testing in a hydropower house, and satisfactory results were obtained. This method can provide some guidance for optimal placement of triaxial sensors of underground powerhouses.展开更多
The hydropower sector is currently experiencing several technological developments.New technologies and practices are emerging to make hydropower more flexible and more sustainable.Novel materials have also been recen...The hydropower sector is currently experiencing several technological developments.New technologies and practices are emerging to make hydropower more flexible and more sustainable.Novel materials have also been recently developed to increase performance,durability,and reliability;however,no systematic discussions can be found in the literature.Therefore,in this paper,novel materials for hydropower applications are presented,and their performance,advantages,and limitations are discussed.For example,composites can reduce the weight of steel equipment by 50%to 80%,polymers and superhydrophobic materials can reduce head losses by 4%to 20%,and novel bearing materials can reduce bearing wear by 6%.These improvements determine higher efficiencies,longer life span,waste reduction,and maintenance needs,although the initial cost of some materials is not yet competitive with respect to the costs of traditional materials.The novel materials are described here based on the following categories:novel materials for turbines,dams and waterways,bearings,seals,and ocean hydropower.展开更多
Recently, various toppling slopes have emerged with the development of hydropower projects in the western mountainous regions of China. The slope on the right bank of the Laxiwa Hydropower Station, located on the main...Recently, various toppling slopes have emerged with the development of hydropower projects in the western mountainous regions of China. The slope on the right bank of the Laxiwa Hydropower Station, located on the mainstream of the Yellow River in the Qinghai Province of Northwest China, is a typical hard rock slope. Further, its deformation characteristics are different from those of common natural hard rock toppling. Because this slope is located close to the dam of the hydropower station, its deformation mechanism has a practical significance. Based on detailed geological engineering surveys, four stages of deformation have been identified using discrete element numerical software and geological engineering analysis methods, including toppling creep, initial toppling deformation, intensified toppling deformation, and current slope formation. The spatial and time-related deformation of this site also exhibited four stages, including initial toppling, toppling development, intensification of toppling, and disintegration and collapse. Subsequently, the mechanism of toppling and deformation of the bank slope were studied. The results of this study exhibit important reference value for developing the prevention–control design of toppling and for ensuring operational safety in the hydropower reservoir area.展开更多
By using the shear stress transport (SST) model to predict the effect ot random now motion in a fluid zone, and using the Newmark method to solve the oscillation equations in a solid zone, a coupling model of the .p...By using the shear stress transport (SST) model to predict the effect ot random now motion in a fluid zone, and using the Newmark method to solve the oscillation equations in a solid zone, a coupling model of the .powerhouse and its tube water was developed. The effects of fluid-structure interaction are considered through the kinematic and dynamic conditions applied to the fluid-structure interfaces (FSI). Numerical simulation of turbulent flow through the whole flow passage of the powerhouse and concrete structure vibration analysis in the time domain were carried out with the model. Considering the effect of coupling the turbulence and the powerhouse structure, the time history response of both turbulent flows through the whole flow passage and powerhouse structure vibration were generated. Concrete structure vibration analysis shows that the displacement, velocity, and acceleration of the dynamo floor respond dramatically to pressure fluctuations in the flow passage. Furthermore, the spectrum analysis suggests that pressure fluctuation originating from the static and dynamic disturbances of hydraulic turbine blades in the flow passage is one of the most important vibration sources.展开更多
Toward solving the actual operation problems of cascade hydropower stations under hydrologic uncertainty, this paper presents the process of extraction of statistical characteristics from long-term optimal cascade ope...Toward solving the actual operation problems of cascade hydropower stations under hydrologic uncertainty, this paper presents the process of extraction of statistical characteristics from long-term optimal cascade operation, and proposes a monthly operation function algorithm for the actual operation of cascade hydropower stations through the identification, processing, and screening of available information during long-term optimal operation. Applying the operation function to the cascade hydropower stations on the Jinshajiang-Yangtze River system, the modeled long-term electric generation is shown to have high precision and provide benefits. Through comparison with optimal operation, the simulation results show that the operation function proposed retains the characteristics of optimal operation. Also, the inadequacies and attribution of the algorithm are discussed based on case study, providing decision support and reference information for research on large-scale cascade operation work.展开更多
文摘While hydropower is generally considered a clean energy source, it is important to recognize that their waste can still contribute to greenhouse gas emissions (GHG). The purpose of this study is to assess the carbon footprint associated with the waste sector throughout the operational phase of the Nam Theun 2 hydropower plant in Laos. Understanding the environmental impact of the waste sector is crucial for ensuring the plant’s sustainability. This study utilizes the theoretical estimation method recommended in the 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, as well as the Requirements for Specification with guidance at the organization level for quantification and reporting of GHG emissions and removals. We emphasize the significance of implementing sustainable waste management practices to reduce GHG emissions and minimize the environmental impact of hydropower operations. By conducting a comprehensive analysis, this paper also provides insights into the environmental implications of waste management in hydropower plants and identifies strategies to mitigate the carbon footprint in the waste sector. The findings contribute to a better understanding of the environmental sustainability of hydropower plants and provide valuable guidance for policymakers, energy producers, and environmental practitioners involved in hydropower plant design and operation.
基金the Second Scientific Expedition to the Qinghai-Tibet Plateau(Grant No.2019QZKK0405)the investiga-tion and monitoring project on Rational construction and utilization of grassland fence in China National Park(QHXH-2021-07-19-package 2).
文摘Human activities have impacted 77%of the terrestrial ecosystems(excluding Antarctica),and the remaining areas are becoming increasingly endangered.Mapping spatiotemporal dynamics of Human Footprint has been used to evaluate the cumulative interference on terrestrial environments globally.However,fences and hydropower,two widespread and rapidly expanding infrastructures,have not been considered regarding Human Footprint,despite their complicated and extensive effects on ecosystem functioning and species survival.Previous work has proved that fences increase habitat fragmentation,disrupt migratory routes,inadvertently trap and kill wildlife,and hinder genetic exchange.Hydropower construction also caused habitat loss,fragmentation,and degradation.These impacts have received global concern,but fences around the world are difficult to be detected due to the limitations of current cartographic technologies.Furthermore,the effect of hydropower on the terrestrial environment has been underestimated,making the research on this topic at a global scale still in its infancy.Therefore,building an observation network of global fences and hydropower is a necessary step to move forward in the assessment of the impact of human activities on our planet,but also to better provide scientific support for policy-making regarding global biodiversity conservation,the identification of protected areas,and the prioritization of ecological restoration areas.
文摘Hydroelectric reservoirs have environmental impacts as many other sources of energy. Regarding hydropower, these effects include flooding cultivated and forest areas, changes in water quality, negative impacts on water biodiversity, conflict with indigenous people and fish migration. In the nineties, researchers put in evidence of another important impact of dam construction: the greenhouse gases generated by flooding organic matter by reservoir flooding. Scientists argue that like natural human water bodies, the hydropower reservoirs emit biogenic gases into the atmosphere. The diffusive gas flux is associated with the difference between gas partial pressure of each chemical substance considering the aquatic system and the atmosphere. Ebullition is a process where some chemical substances are not soluble in water and bubbles are formed in the sediment at the bottom of the reservoir. Ebullition is often the dominant pathway of CH<sub>4</sub> that is released from aquatic ecosystems. The phenomenon is episodic and irregular and depends mainly on hydrostatic pressure and other physical influences, such as currents, temperature gradients and the bathymetry of the water body. At hydropower reservoirs, other pathways for gas emanation to the atmosphere are the degassing by water passing through turbines of the powerhouse and the gas diffusion across the river downstream dam. This paper gives a review of the state-of-the-art and advances in the research of greenhouse gas emissions and removals from hydropower reservoirs.
文摘Mozambique is doing well in its implementation of renewable energies (green energies), and this is a positive move as it sees to the protection of the environment, reduction of the emission of greenhouse gases, and the reduction of the country’s reliance on foreign fuels which are expensive and an economic burden on a country with an extremely high poverty index in Africa. Green energies like hydropower, solar energy and biomass are already in use with biomass leading, followed by hydropower. This paper explores and analyses the use of hydropower and biomass in Mozambique with the focus being on the extent of their use in the country and the impacts associated with their use. It also aims to look at policies that have been implemented to promote the use of these renewable sources of energy, and it discusses the success of the implementation of these policies and if they have helped in making the use of biomass and hydropower sustainable. The environmental impact of the use of green energies is minimum if compared to fossil fuels but this paper aims to show that there is concern in their use, especially the use of Biomass as there is little consideration being given to its environmental footprint. Mozambique has great potential for hydropower and bioenergy, but potential does not depict the reality as there are several issues to consider before the implementation of such in a developing country like Mozambique and this work explores the existence of issues that affect or hinder the growth and the sustainability of the use Biomass and Hydropower, and this is crucial in policy revision and implementation.
文摘Hydropower gains increasing importance as a steerable and controllable power source in a renewable energy mix and deregulated markets. Although hydropower produces fossil-free energy, it has a significant impact on the local environment. This review investigates the effects of flow alterations by hydropower on the downstream river system and the possibilities to integrate these effects into hydraulic modeling. The results show that various effects of flow regulation on the ecosystem, but also social and economic effects on related communities were observed in the last decades. The application of hydraulic models for investigations of ecological effects is common. Especially hydraulic effects and effects on fish were extensively modeled with the help of hydraulic 1D- and 2D-simulations. Current applications to investigate social and economic effects integrated into hydraulic modeling are meanwhile limited. Approaches to realizing this integration are presented. Further research on the economic valuation of ecosystems and integration of social and economic effects to hydraulic models is necessary to develop holistic tools to support decision-making on sustainable hydropower.
文摘This paper describes the present situation, construction experiences, existing problems and the principal tasks in the development of small hydropower in China.
文摘This paper introduces the abundant hydropower resources in western region in China, the role hydropower will play in the extensive development of western region, the finished reconstruction activities, as well as the basic thought and near and long term targets on western hydropower development.
文摘This study attempted to use the soil and water assessment tool(SWAT), integrated with geographic information systems(GIS), for assessment of climate change impacts on hydropower generation. This methodology of climate change impact modeling was developed and demonstrated through application to a hydropower plant in the Rio Jubones Basin in Ecuador. ArcSWAT 2012 was used to develop a model for simulating the river flow. The model parameters were calibrated and validated on a monthly scale with respect to the hydro-meteorological inputs observed from 1985 to 1991 and from 1992 to 1998, respectively. Statistical analyses produced Nash-Sutcliffe efficiencies(NSEs) of 0.66 and 0.61 for model calibration and validation, respectively, which were considered acceptable. Numerical simulation with the model indicated that climate change could alter the seasonal flow regime of the basin, and the hydropower potential could change due to the changing climate in the future.Scenario analysis indicates that, though the hydropower generation will increase in the wet season, the plant will face a significant power shortage during the dry season, up to 13.14% from the reference scenario, as a consequence of a 17% reduction of streamflow under an assumption of a 2.9℃ increase in temperature and a 15% decrease in rainfall. Overall, this study showed that hydrological processes are realistically modeled with SWAT and the model can be a useful tool for predicting the impact of climate change.
基金supported by the National Natural Science Foundation of China(Grants No.51409261 and 11172090)the Natural Science Foundation of Shandong Province(Grants No.ZR2014EEQ014)the Applied Basic Research Programs of Qingdao City(Grant No.14-2-4-67-jch)
文摘There are many fracture zones crossing the dam foundation of the Xiangjiaba Hydropower Project in southwestern China. Clastic rock is the main media of the fracture zone and has poor physical and mechanical properties. In order to investigate the creep behavior of clastic rock, triaxial creep tests were conducted using a rock servo-controlling rheological testing machine. The results show that the creep behavior of clastic rock is significant at a high level of deviatoric stress, and less time-dependent deformation occurs at high confining pressure. Based on the creep test results, the relationship between axial strain and time under different confining pressures was investigated, and the relationship between axial strain rate and deviatoric stress was also discussed. The strain rate increases rapidly, and the rock sample fails eventually under high deviatoric stress. Moreover, the creep failure mechanism under different confining pressures was analyzed. The main failure mechanism of clastic rock is plastic shear, accompanied by a significant compression and ductile dilatancy. On the other band, with the determined parameters, the Burgers creep model was used to fit the creep curves. The results indicate that the Burgers model can exactly describe the creep behavior of clastic rock in the Xiangjiaba Hydropower Project.
基金Supported by the National Natural Science Foundation of China (40902086)the National Key Technology R&D Program in the 11th Five-year Plan of China (2008BAB29B01-5)
文摘Jinping Ⅱ hydropower station is located in a high in-situ stress region in Southwest China. During the excavations of the transportation and drainage tunnels, more than 460 rockburst events were recorded in the transportation tunnel and 110 in the drainage tunnel, which has a serious and negative influence on the tunnels’ construction and the safety of staff and equipment. In the paper, the characters of rockburst patterns are analyzed for the transportation and drainage tunnels. The results are illustrated as follow: (1) Most of intensive rockbursts occur in the layer T2b, and continuous occurrences of rockbursts are more frequently observed than those in other layers. (2) The critical overburden depth of rockburst in the transportation tunnel is 600 m, and the length of the continuous occurrence section of rockburst is smaller than 25 m. The damaged depth of the rockburst has the tendency to increase with the increasing overburden depth, and the maximum damaged depth is over 3.5 m. (3) From east to west (west to east) in Jinping Ⅱ hydropower station, the rockburst usually takes place in the right (left) side of tunnel working face, and then the left (right) or roof of the tunnel. The total length of the continuous occurrence section of rockburst is 57.4%–62.2% of the overall rockburst length, followed by the rockbursts of flake-splitting type and other types. (4) Compared with the transportation tunnel, the intensity of rockburst in the drainage tunnel is higher while the length of the continuous occurrence section of rockburst is smaller. The rockburst section with length less than 10 m and depth of 1 m mainly occurs in the layer at a depth of 1 800–2 000 m. The influences of opening geometry and excavation method on the characteristics of the adjacent zone are great, but the influence of the stress among the tunnel group induced by excavation is relatively low.
文摘According to site-specific environments such as high water pressures, high in-situ stresses and strong rockbursts, the design scheme of the long and deep diversion tunnels at Jinping II hydropower station was optimized to ensure construction safety. New drainage tunnels were considered. Furthermore, lining structures and grouting pressures were modified during the excavation of tunnels. The construction scheme was updated dynamically based on the complex geological conditions. For instances, the diversion tunnels were first excavated by drilling and blasting method at the first stage of construction, and then by the combination method of tunnel boring machine (TBM) and drilling and blasting, and finally by drilling and blasting method. Through optimized scheme and updated construction scheme, the excavation of diversion tunnel #1 was successfully completed in June, 2011. This paper summarizes the key issues in rock mechanics associated with the construction of the long and deep diversion tunnels at Jinping II hydropower station. The experiences of design and construction obtained from this project could provide reference to similar projects.
基金the financial support from the International Partnership Program of Chinese Academy of Sciences(Grant No.115242KYSB20160017)the Key Project of Natural Science Foundation of China(Grant No.11232014)National Natural Science Foundation of China(Grant No.51379202)
文摘The columnar jointed rock mass(CJR), composed of polygonal cross-sectional columns cut by several groups of joints in various directions, was exposed during the excavations of the Baihetan hydropower station, China. In order to investigate the unloading performances and the stability conditions during excavation of the columns, an experimental field study was performed. Firstly, on-site investigations indicated that the geotechnical problems, including rock relaxation, cracking and collapse, were the most prominent for the CJR Class I that contains intensive joint network and the smallest column sizes.Comprehensive field tests, including deformation measurement by multi-point extensometers, ultrasonic wave testing, borehole television observation and stress monitoring of rock anchors, revealed that the time-dependent relaxation of the CJRs was marked. The practical excavation experiences for the Baihetan columnar jointed rock masses, such as blasting scheme, supporting time of shotcrete and rock bolts, were presented in the excavations of the diversion tunnels. These detailed investigations and practical construction experiences can provide helpful information for similar geotechnical works in jointed rock mass.
基金supported by the National Natural Science Foundation of China [No.51579029]Fundamental Research Funds for the Central Universities (No. DUT19JC43)
文摘Large-capacity hydropower transmission from southwestern China to load centers via ultra-high voltage direct current(UHVDC) or ultra-high voltage alternating current(UHVAC) transmission lines is an important measure of the accommodation of large-scale hydropower in China. The East China Grid(ECG) is the main hydropower receiver of the west–east power transmission channel in China. Moreover, it has been subject to a rapidly increasing rate of hydropower integration over the past decade. Currently, large-scale outer hydropower is one of the primary ECG power sources. However, the integration of rapidly increasing outer hydropower into the power grid is subject to a series of severe drawbacks. Therefore, this study considered the load demands and hydropower transmission characteristics for the analysis of several major problems and the determination of appropriate solutions. The power supply-demand balance problem, hydropower transmission schedule problem, and peakshaving problem were considered in this study. Correspondingly, three solutions are suggested in this paper, which include coordination between the outer hydropower and local power sources, an inter-provincial power complementary operation, and the introduction of a market mechanism. The findings of this study can serve as a basis to ensure that the ECG effectively receives an increased amount of outer hydropower in the future.
基金supported by the National Science Fund for Distinguished Young Scholars under Grant No.71025005the National Natural Science Foundation of China under Grant Nos.91224001 and 71301006+1 种基金National Program for Support of Top-Notch Young Professionalsthe Fundamental Research Funds for the Central Universities in BUCT
文摘Due to the nonlinearity and nonstationary of hydropower market data, a novel hybrid learning paradigm is proposed to predict hydropower consumption, by incorporating firefly algorithm (FA) into least square support vector regression (LSSVR), i.e., FA-based LSSVR model. In the novel model, the powerful and effective artificial intelligence (AI) technique, i.e., LSSVR, is employed to forecast hydropower consumption. Furthermore, a promising AI optimization tool, i.e., FA, is espe- cially introduced to address the crucial but difficult task of parameters determination in LSSVR (e.g., hyper and kernel function parameters). With the Chinese hydropower consumption as sample data, the empirical study has statistically confirmed the superiority of the novel FA-based LSSVR model to other benchmark models (including existing popular traditional econometric models, AI models and similar hybrid LSSVRs with other popular parameter searching tools)~ in terms of level and direc- tional accuracy. The empirical results also imply that the hybrid FA-based LSSVR learning paradigm with powerful forecasting tool and parameters optimization method can be employed as an effective forecasting tool for not only hydropower consumption but also other complex data.
基金supported by the National Natural Science Foundation of China (Grant No. 50909072)the New Teachers' Fund for Doctor Station, the Ministry of Education of China (Grant No. 20090032120082)the Communication Research Item for the West Area, the Ministry of Communications of China (Grant No. 2009328000084)
文摘The capacity and size of hydro-generator units are increasing with the rapid development of hydroelectric enterprises, and the vibration of the powerhouse structure has increasingly become a major problem. Field testing is an important method for research on dynamic identification and vibration mechanisms. Research on optimal sensor placement has become a very important topic due to the need to obtain effective testing information from limited test resources. To overcome inadequacies of the present methods, this paper puts forward the triaxial effective independence driving-point residue (EfI3-DPR3) method for optimal sensor placement. The Efl3-DPR3 method can incorporate both the maximum triaxial modal kinetic energy and linear independence of the triaxial target modes at the selected nodes. It was applied to the optimal placement oftriaxial sensors for vibration testing in a hydropower house, and satisfactory results were obtained. This method can provide some guidance for optimal placement of triaxial sensors of underground powerhouses.
文摘The hydropower sector is currently experiencing several technological developments.New technologies and practices are emerging to make hydropower more flexible and more sustainable.Novel materials have also been recently developed to increase performance,durability,and reliability;however,no systematic discussions can be found in the literature.Therefore,in this paper,novel materials for hydropower applications are presented,and their performance,advantages,and limitations are discussed.For example,composites can reduce the weight of steel equipment by 50%to 80%,polymers and superhydrophobic materials can reduce head losses by 4%to 20%,and novel bearing materials can reduce bearing wear by 6%.These improvements determine higher efficiencies,longer life span,waste reduction,and maintenance needs,although the initial cost of some materials is not yet competitive with respect to the costs of traditional materials.The novel materials are described here based on the following categories:novel materials for turbines,dams and waterways,bearings,seals,and ocean hydropower.
基金financially supported by the National Key R&D Program of China (2018YFC1504905)the Funds for Creative Research Groups of China (41521002)the National Natural Science Foundation of China (41772317 and 41372306)
文摘Recently, various toppling slopes have emerged with the development of hydropower projects in the western mountainous regions of China. The slope on the right bank of the Laxiwa Hydropower Station, located on the mainstream of the Yellow River in the Qinghai Province of Northwest China, is a typical hard rock slope. Further, its deformation characteristics are different from those of common natural hard rock toppling. Because this slope is located close to the dam of the hydropower station, its deformation mechanism has a practical significance. Based on detailed geological engineering surveys, four stages of deformation have been identified using discrete element numerical software and geological engineering analysis methods, including toppling creep, initial toppling deformation, intensified toppling deformation, and current slope formation. The spatial and time-related deformation of this site also exhibited four stages, including initial toppling, toppling development, intensification of toppling, and disintegration and collapse. Subsequently, the mechanism of toppling and deformation of the bank slope were studied. The results of this study exhibit important reference value for developing the prevention–control design of toppling and for ensuring operational safety in the hydropower reservoir area.
基金supported by the National Natural Science Foundation of China (Grant No.90510017)
文摘By using the shear stress transport (SST) model to predict the effect ot random now motion in a fluid zone, and using the Newmark method to solve the oscillation equations in a solid zone, a coupling model of the .powerhouse and its tube water was developed. The effects of fluid-structure interaction are considered through the kinematic and dynamic conditions applied to the fluid-structure interfaces (FSI). Numerical simulation of turbulent flow through the whole flow passage of the powerhouse and concrete structure vibration analysis in the time domain were carried out with the model. Considering the effect of coupling the turbulence and the powerhouse structure, the time history response of both turbulent flows through the whole flow passage and powerhouse structure vibration were generated. Concrete structure vibration analysis shows that the displacement, velocity, and acceleration of the dynamo floor respond dramatically to pressure fluctuations in the flow passage. Furthermore, the spectrum analysis suggests that pressure fluctuation originating from the static and dynamic disturbances of hydraulic turbine blades in the flow passage is one of the most important vibration sources.
基金supported by the National Natural Science Foundation of China (Grant No. 40971300)the Fundamental Research Funds for the Central Universities (Grant No.10QX43)
文摘Toward solving the actual operation problems of cascade hydropower stations under hydrologic uncertainty, this paper presents the process of extraction of statistical characteristics from long-term optimal cascade operation, and proposes a monthly operation function algorithm for the actual operation of cascade hydropower stations through the identification, processing, and screening of available information during long-term optimal operation. Applying the operation function to the cascade hydropower stations on the Jinshajiang-Yangtze River system, the modeled long-term electric generation is shown to have high precision and provide benefits. Through comparison with optimal operation, the simulation results show that the operation function proposed retains the characteristics of optimal operation. Also, the inadequacies and attribution of the algorithm are discussed based on case study, providing decision support and reference information for research on large-scale cascade operation work.