A generalized formulation for short-term scheduling of steam power system in iron and steel industry under the time-of-use(TOU)power price was presented,with minimization of total operational cost including fuel cos...A generalized formulation for short-term scheduling of steam power system in iron and steel industry under the time-of-use(TOU)power price was presented,with minimization of total operational cost including fuel cost,equipment maintenance cost and the charge of exchange power with main grid.The model took into account the varying nature of surplus byproduct gas flows,several practical technical constraints and the impact of TOU power price.All major types of utility equipments,involving boilers,steam turbines,combined heat and power(CHP)units,and waste heat and energy recovery generators(WHERG),were separately modeled using thermodynamic balance equations and regression method.In order to solve this complex nonlinear optimization model,a new improved particle swarm optimization(IPSO)algorithm was proposed by incorporating time-variant parameters,a selfadaptive mutation scheme and efficient constraint handling strategies.Finally,a case study for a real industrial example was used for illustrating the model and validating the effectiveness of the proposed approach.展开更多
Large-scale new energy pressures on the grids bring challenges to power system's security and stability.In order to optimize the user's electricity consumption behavior and ease pressure,which is caused by new...Large-scale new energy pressures on the grids bring challenges to power system's security and stability.In order to optimize the user's electricity consumption behavior and ease pressure,which is caused by new energy on the grid,this paper proposes a time-of-use price model that takes wind power uncertainty into account.First,the interval prediction method is used to predict wind power.Then typical wind power scenes are selected by random sampling and bisecting the K-means algorithm.On this basis,integer programming is used to divide the peak-valley period of the multi-scenes load.Finally,under the condition of many factors such as user response based on consumer psychology,user electricity charge and power consumption,this paper takes the peak-valley difference of equivalent net load and the user dissatisfaction degree as the goal,and using the NSGA-II multi-objective optimization algorithm,evaluates the Pareto solution set to obtain the optimal solution.In order to test the validity of the model proposed in this paper,we apply it to an industrial user and wind farms in Yan'an city,China.The results show that the model can effectively ensure the user's electrical comfort while achieving the role of peak shaving and valley flling.展开更多
Considering comprehensive benefit of micro-grid system and consumers,we establish a mathematical model with the goal of the maximum consumer satisfaction and the maximum benefit of power generation side in the view of...Considering comprehensive benefit of micro-grid system and consumers,we establish a mathematical model with the goal of the maximum consumer satisfaction and the maximum benefit of power generation side in the view of energy management.An improved multi-objective local mutation adaptive quantum particle swarm optimization(MO-LM-AQPSO)algorithm is adopted to obtain the Pareto frontier of consumer satisfaction and the benefit of power generation side.The optimal solution of the non-dominant solution is selected with introducing the power shortage and power loss to maximize the benefit of power generation side,and its reasonableness is verified by numerical simulation.Then,translational load and time-of-use electricity price incentive mechanism are considered and reasonable peak-valley price ratio is adopted to guide users to actively participate in demand response.The simulation results show that the reasonable incentive mechanism increases the benefit of power generation side and improves the consumer satisfaction.Also the mechanism maximizes the utilization of renewable energy and effectively reduces the operation cost of the battery.展开更多
基金Sponsored by National Natural Science Foundation of China(51304053)International Science and Technology Cooperation Program of China(2013DFA10810)
文摘A generalized formulation for short-term scheduling of steam power system in iron and steel industry under the time-of-use(TOU)power price was presented,with minimization of total operational cost including fuel cost,equipment maintenance cost and the charge of exchange power with main grid.The model took into account the varying nature of surplus byproduct gas flows,several practical technical constraints and the impact of TOU power price.All major types of utility equipments,involving boilers,steam turbines,combined heat and power(CHP)units,and waste heat and energy recovery generators(WHERG),were separately modeled using thermodynamic balance equations and regression method.In order to solve this complex nonlinear optimization model,a new improved particle swarm optimization(IPSO)algorithm was proposed by incorporating time-variant parameters,a selfadaptive mutation scheme and efficient constraint handling strategies.Finally,a case study for a real industrial example was used for illustrating the model and validating the effectiveness of the proposed approach.
基金supported by the Research Fund of the State Key Laboratory of Eco-hydraulics in Northwest Arid Region,Xi'an University of Technology(Grant No.2019KJCXTD-5)the Natural Science Basic Research Program of Shaanxi(Grant No.2019JLZ-15)the Key Research and Development Plan of Shaanxi Province(Grant No.2018-ZDCXL-GY-10-04).
文摘Large-scale new energy pressures on the grids bring challenges to power system's security and stability.In order to optimize the user's electricity consumption behavior and ease pressure,which is caused by new energy on the grid,this paper proposes a time-of-use price model that takes wind power uncertainty into account.First,the interval prediction method is used to predict wind power.Then typical wind power scenes are selected by random sampling and bisecting the K-means algorithm.On this basis,integer programming is used to divide the peak-valley period of the multi-scenes load.Finally,under the condition of many factors such as user response based on consumer psychology,user electricity charge and power consumption,this paper takes the peak-valley difference of equivalent net load and the user dissatisfaction degree as the goal,and using the NSGA-II multi-objective optimization algorithm,evaluates the Pareto solution set to obtain the optimal solution.In order to test the validity of the model proposed in this paper,we apply it to an industrial user and wind farms in Yan'an city,China.The results show that the model can effectively ensure the user's electrical comfort while achieving the role of peak shaving and valley flling.
基金National Natural Science Foundation of China(No.519667013)Institution of Higher Learning Scientific Research Project of Gansu Province of China(No.2016B-032)。
文摘Considering comprehensive benefit of micro-grid system and consumers,we establish a mathematical model with the goal of the maximum consumer satisfaction and the maximum benefit of power generation side in the view of energy management.An improved multi-objective local mutation adaptive quantum particle swarm optimization(MO-LM-AQPSO)algorithm is adopted to obtain the Pareto frontier of consumer satisfaction and the benefit of power generation side.The optimal solution of the non-dominant solution is selected with introducing the power shortage and power loss to maximize the benefit of power generation side,and its reasonableness is verified by numerical simulation.Then,translational load and time-of-use electricity price incentive mechanism are considered and reasonable peak-valley price ratio is adopted to guide users to actively participate in demand response.The simulation results show that the reasonable incentive mechanism increases the benefit of power generation side and improves the consumer satisfaction.Also the mechanism maximizes the utilization of renewable energy and effectively reduces the operation cost of the battery.