期刊文献+
共找到4,159篇文章
< 1 2 208 >
每页显示 20 50 100
Assessing the Efficacy of Wheat-Soybean Based Intercropping System at Different Plant Densities in Bambili, Cameroon
1
作者 Lendzemo E. Tatah Jeazet K. Teitiogo +3 位作者 Oben Tom Tabi Tange D. Achiri Njualem D. Khumbah Chi Christopher Tamu 《American Journal of Plant Sciences》 CAS 2024年第4期235-251,共17页
Wheat is one of the most important cereals in the world, serving as a staple for millions globally. In the wake of the geopolitical crisis between Russia and Ukraine, it has become incumbent for many countries to inve... Wheat is one of the most important cereals in the world, serving as a staple for millions globally. In the wake of the geopolitical crisis between Russia and Ukraine, it has become incumbent for many countries to invest in wheat production. Improving cropping systems for wheat production is paramount. Intercropping cereals with legumes has tremendous advantages. Therefore, this study was designed to optimize wheat production by intercropping it with soybean at different densities. Between March and August 2023, a randomized complete block design trial was conducted in Bambili, North West of Cameroon with treatments T1 (wheat monocrop at 200,000 plants ha<sup>−</sup><sup>1</sup>), T2 (soybean monocrop at 250,000 plants ha<sup>−</sup><sup>1</sup>), T3 (200,000 wheat and 125,000 soybean ha<sup>−</sup><sup>1</sup>), T4 (100,000 wheat and 250,000 soybean ha<sup>−</sup><sup>1</sup>), T5 (200,000 wheat and 250,000 soybean ha<sup>−</sup><sup>1</sup>) and T6 (100,000 wheat and 125,000 soybean ha<sup>−</sup><sup>1</sup>). Results revealed that growth parameters of wheat were not significantly influenced by monocrop or intercrop. The yield of wheat was significantly higher in the monocrop than the intercrop treatments, with slight variation amongst the intercrop treatments. Soybean yield was higher in the monocrop than in the intercrop, with no variations amongst the intercrop treatments. Only the land equivalence ratio (LER) for T5 was greater than 1.0. The competitive ratio for T5 was 0.54 for wheat and 1.90 for soybean, comparatively lower than the other monocrop treatments. Intercropping wheat and soybean at 200,000:250,000 ratio is recommended. 展开更多
关键词 Competitive Ration Land Equivalence Ration intercrop SOYBEAN WHEAT
下载PDF
Soybean maize strip intercropping:A solution for maintaining food security in China
2
作者 Jiang Liu Wenyu Yang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第7期2503-2506,共4页
The practice of intercropping leguminous and gramineous crops is used for promoting sustainable agriculture,optimizing resource utilization,enhancing biodiversity,and reducing reliance on petroleum products.However,pr... The practice of intercropping leguminous and gramineous crops is used for promoting sustainable agriculture,optimizing resource utilization,enhancing biodiversity,and reducing reliance on petroleum products.However,promoting conventional intercropping strategies in modern agriculture can prove challenging.The innovative technology of soybean maize strip intercropping(SMSI)has been proposed as a solution.This system has produced remarkable results in improving domestic soybean and maize production for both food security and sustainable agriculture.In this article,we provide an overview of SMSI and explain how it differs from traditional intercropping.We also discuss the core principles that foster higher yields and the prospects for its future development. 展开更多
关键词 strip intercropping food security SOYBEAN MAIZE spatial arrangement
下载PDF
Alternate cotton-peanut intercropping:a new approach to increasing productivity and minimizing environmental impact
3
作者 CHI Baojie DONG Hezhong 《Journal of Cotton Research》 CAS 2024年第1期101-103,共3页
Recent publications have highlighted the development of an alternate cotton-peanut intercropping as a novel strat-egy to enhance agricultural productivity.In this article,we provide an overview of the progress made in... Recent publications have highlighted the development of an alternate cotton-peanut intercropping as a novel strat-egy to enhance agricultural productivity.In this article,we provide an overview of the progress made in the alternate cotton-peanut intercropping,specifically focusing on its yield benefits,environmental impacts,and the underlying mechanisms.In addition,we advocate for future investigations into the selection or development of appropriate crop varieties and agricultural equipment,pest management options,and the mechanisms of root-canopy interactions.This review is intended to provide a valuable reference for understanding and adopting an alternate intercropping system for sustainable cotton production. 展开更多
关键词 Cotton PEANUT Alternate intercropping PRODUCTIVITY
下载PDF
Coordinated responses of leaf and nodule traits contribute to the accumulation of N in relay intercropped soybean
4
作者 Ping Chen Qing Du +8 位作者 Benchuan Zheng Huan Yang Zhidan Fu Kai Luo Ping Lin Yilin Li Tian Pu Taiwen Yong Wenyu Yang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第6期1910-1928,共19页
Maize(Zea mays L.)-soybean(Glycine max L.Merr.)relay intercropping provides a way to enhance land productivity.However,the late-planted soybean suffers from shading by the maize.After maize harvest,how the recovery gr... Maize(Zea mays L.)-soybean(Glycine max L.Merr.)relay intercropping provides a way to enhance land productivity.However,the late-planted soybean suffers from shading by the maize.After maize harvest,how the recovery growth influences the leaf and nodule traits remains unclear.A three-year field experiment was conducted to evaluate the effects of genotypes,i.e.,supernodulating(nts1007),Nandou 12(ND12),and Guixia 3(GX3),and crop configurations,i.e.,the interspecific row spacing of 45(I45),60(I60),75 cm(I75),and sole soybean(SS),on soybean recovery growth and N fixation.The results showed that intercropping reduced the soybean total leaf area(LA)by reducing both the leaf number(LN)and unit leaflet area(LUA),and it reduced the nodule dry weight(NW)by reducing both the nodule number(NN)and nodule diameter(ND)compared with the SS.The correlation and principal component analysis(PCA)indicated a co-variability of the leaf and nodule traits in response to the genotype and crop configuration interactions.During the recovery growth stages,the compensatory growth promoted soybean growth to reduce the gaps of leaf and nodule traits between intercropping and SS.The relative growth rates of ureide(RGR_U)and nitrogen(RGR_N)accumulation were higher in intercropping than in SS.Intercropping achieved more significant sucrose and starch contents compared with SS.ND12 and GX3 showed more robust compensatory growth than nts1007 in intercropping.Although the recovery growth of relay intercropping soybean improved biomass and nitrogen accumulation,ND12 gained a more significant partial land equivalent ratio(pLER)than GX3.The I60 treatment achieved more robust compensation effects on biomass and N accumulation than the other configurations.Meanwhile,I60 showed a higher nodule sucrose content and greater shoot ureide and N accumulation than SS.Finally,intercropping ND12 with maize using an interspecific row spacing of 60 cm was optimal for both yield advantage and N accumulation. 展开更多
关键词 relay intercropping GENOTYPE crop configuration symbiotic nitrogen fixation SOYBEAN NODULE
下载PDF
Legume Green Manure and Intercropping for High Biomass Sorghum Production
5
作者 Clark B. Neely Francis M. Rouquette Jr. +3 位作者 Cristine L. S. Morgan Frank M. Hons William L. Rooney Gerald R. Smith 《Agricultural Sciences》 2024年第6期605-621,共17页
Before the advent of cheap, synthetic fertilizers, legumes were commonly used as green manure crops for their ability to fix atmospheric nitrogen (N). A three-year study at Overton, TX examined legume integration into... Before the advent of cheap, synthetic fertilizers, legumes were commonly used as green manure crops for their ability to fix atmospheric nitrogen (N). A three-year study at Overton, TX examined legume integration into high-biomass sorghum (Sorghum bicolor L.) production systems on a Lilbert loamy fine sand recently cultivated after a fertilized bermudagrass [Cynodon dactylon (L.) Pers.] pasture. In this split-split plot design, ‘Dixie’ crimson clover (Trifolium incarnatum L.) and ‘Iron and Clay’ cowpea (Vigna unguiculata L.) were integrated into a high-biomass sorghum production system to evaluate impacts on N concentration, C concentration, and yield of high-biomass sorghum and their impacts on soil total N and soil organic carbon (SOC). Main plots were split into crimson clover green manure (CLGM) and winter fallow (FALL) followed by three sub-plots split into warm-season crop rotations: cowpea green manure (CPGM), cowpea-sorghum intercrop (CPSR), and sorghum monocrop (SORG). Three N fertilizer treatments (0, 45, 90 kg N∙ha−1) were randomized and applied as sub-sub plots. The CLGM increased (P sorghum biomass yield (16.5 t DM∙ha−1) 28% in year three but had no effect in the first two years. The CPSR treatment reduced sorghum yield up to 62% compared to SORG;whereas CPGM increased sorghum yield 56% and 18% the two years following cowpea incorporation. Rate of N fertilizer had no effect on sorghum biomass yield. Decrease in SOC and soil N over time indicated mineralization of organic N and may explain why no N fertilizer response was observed in sorghum biomass yield. Cowpea showed strong potential as a green manure crop but proved to be too competitive for successful intercropping in high-biomass sorghum production systems. 展开更多
关键词 High-Biomass Sorghum Legumes Green Manure intercrop COWPEA Crimson Clover Soil Organic Carbon Soil Nitrogen
下载PDF
Several Cotton Rotation and Intercropping Systems in Cotton Planting Area of Eastern Henan Province
6
作者 Yubei DU Zongyan CHU +6 位作者 Yuxuan TANG Mingjuan CHANG Chao WU Yanan ZHAN Suling LIU Xiaohong SI Yuqin ZHOU 《Plant Diseases and Pests》 2024年第4期40-42,共3页
In recent years,the area dedicated to cotton cultivation in eastern Henan Province has experienced a continuous decline.Developing efficient multi-cropping systems for cotton and increasing the multiple cropping index... In recent years,the area dedicated to cotton cultivation in eastern Henan Province has experienced a continuous decline.Developing efficient multi-cropping systems for cotton and increasing the multiple cropping index represent effective strategies to stabilize the cotton planting area and enhance the income of cotton farmers.This paper presents an overview of intercropping systems and the benefits associated with cotton rotation and intercropping practices.Specifically,it discusses the"early maturing cotton-wheat"rotation system,the"cotton-watermelon"intercropping system,the"cotton-Dutch bean"intercropping system,and the"early maturing cotton-peanut-garlic"intercropping system. 展开更多
关键词 COTTON intercropPING Crop rotation Wheat Dutch bean WATERMELON
下载PDF
Assessing the Influence of Phosphorus Fertilization on the Growth and Yield of Maize/Soybean Intercrop by Analyzing Nitrogen Uptake
7
作者 Bertha Magombo Chunjie Li Benjamin Kolie 《Natural Resources》 2024年第8期189-210,共22页
Intercropping, particularly the combination of maize and soybeans, has been widely recognized for its potential to improve nitrogen uptake and promote sustainable agriculture. This study examines the patterns of nitro... Intercropping, particularly the combination of maize and soybeans, has been widely recognized for its potential to improve nitrogen uptake and promote sustainable agriculture. This study examines the patterns of nitrogen uptake in maize and soybean intercropping systems under different growth stages and phosphorus fertilization levels and investigates the influence of nitrogen uptake on growth parameters such as plant height, leaf area, and biomass accumulation in the maize/soybean intercrop under different phosphorus fertilization regimes. The study also collected chlorophyll samples at different growth stages of maize in monoculture and intercropping with maize or soybean. The results showed that plant height was greater in V10 in both fertilized and unfertilized treatments for intercropped maize and soybean, and chlorophyll concentration was higher in VT intercropped maize. The results also showed a higher accumulation of biomass. Understanding the growth dynamics of these plants in monoculture and intercropping systems and the impact of fertilization practices is crucial for optimizing crop productivity and sustainability in agricultural systems. 展开更多
关键词 intercropPING FERTILIZATION CHLOROPHYLL Maize/Soybeans Nitrogen
下载PDF
Assessment of Nitrogen Fixation, Uptake, and Leaching in Maize/Soybean Intercropping System at Varied Soil Depths and under Phosphorus Application in Chinese Agricultural Settings
8
作者 Bertha Magombo Chunjie Li Benjamin Kolie 《Natural Resources》 2024年第7期173-187,共15页
The study of Nitrogen fixation, uptake, and leaching at different soil depths in the co-cultivation of maize and soybean under phosphorus fertilization is important for sustainable agriculture. This study was conducte... The study of Nitrogen fixation, uptake, and leaching at different soil depths in the co-cultivation of maize and soybean under phosphorus fertilization is important for sustainable agriculture. This study was conducted in Quzhou, Hebei Province, China, with MC812 maize and Jidou12 soybean varieties. Soil samples were taken from each plot to create a composite sample. The results show that nitrogen concentration varies at different depths and is higher in all treatments between 40 and 100 cm. Incorporating intercropping of maize and soybeans into farming practices can lead to more sustainable and environmentally friendly agriculture in China. 展开更多
关键词 Nitrogen Maize/Soybean FERTILIZATION intercropPING Soil FIXATION
下载PDF
Effects of Spatial Row Arrangement and Time of Planting Intercrops on Performance of Groundnut (Arachis hypogaea L.) under Maize (Zea mays L.)—Groundnut Intercropping System in Ejura
9
作者 Fuseini Bawaror Bugilla Kwadwo Gyasi Santo +3 位作者 Abdul Aziz Khalid Daniel Ntiamoah Afreh Kwabena Atakora Muntala Abdulai 《American Journal of Plant Sciences》 CAS 2023年第3期264-289,共26页
In monoculture, crop failure due to biotic or abiotic causes can result in partial or total output failure. The yield, socio-economic, and environmental effects of intercropping on the farmer and the environment as a ... In monoculture, crop failure due to biotic or abiotic causes can result in partial or total output failure. The yield, socio-economic, and environmental effects of intercropping on the farmer and the environment as a whole have not received much attention. There is a dearth of knowledge on the productivity of maize-groundnut intercrops in Ghana regarding the relative timing of planting and spatial arrangement of component crops. Therefore, the objective of the study was to determine the effects of spatial row arrangement and the time of planting intercrops on the productivity of groundnut under maize-groundnut intercropping. The 5 × 3 factorial field experiment was undertaken at the Miminaso community in the Ejura-Sekyedumase municipality of the Ashanti Region of Ghana during the 2020 cropping seasons. Treatments were evaluated in a Randomized Complete Block Design (RCBD) with three replicates. The levels of row arrangement of intercrops were: one row of maize and one row of groundnut (1M1G), one row of maize and two rows of groundnut (1M2G), two rows of maize and one row of groundnut (2M1G), two rows of maize and two rows of groundnut (2M2G), sole maize and sole groundnut (M/G). The levels of time of introducing groundnut included simultaneous planting of intercrops (0 WAP), planting groundnut one week after planting maize (1 WAP) and planting groundnut two weeks after planting maize (2 WAP). There were significant (P 0.05) treatment interactions for pod and seed yields of groundnut throughout the study. The highest groundnut pod yields of 1815.00 kg/ha and 2359.00 kg/ha were recorded by the 0WAP × 1M2G treatment in the major and minor seasons of 2020, respectively, while the highest groundnut seed yields of 741.00 kg/ha and 726.00 kg/ha were recorded in the major and minor rainy seasons of 2020 by 1WAP × G and 0WAP × G treatments, respectively. The highest seed yields of groundnut (404 kg/ha and 637 kg/ha for major and minor rainy seasons, respectively) were produced by 1WAP × 2M2G. 展开更多
关键词 intercropPING GROUNDNUT MAIZE Growth Yield Time Row Arrangement
下载PDF
Millet/peanut intercropping at a moderate N rate increases crop productivity and N use efficiency,as well as economic benefits,under rain-fed conditions
10
作者 LIU Zhu NAN Zhen-wu +5 位作者 LIN Song-ming YU Hai-qiu XIE Li-yong MENG Wei-wei ZHANG Zheng WAN Shu-bo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第3期738-751,共14页
Cereal and legume intercropping has been widely adopted to increase crop productivity in sustainable farming systems worldwide.Among different intercropping combinations,millet and peanut intercropping can be adapted ... Cereal and legume intercropping has been widely adopted to increase crop productivity in sustainable farming systems worldwide.Among different intercropping combinations,millet and peanut intercropping can be adapted to most waterlimited areas.However,there are few studies on the differences in yield characteristics and nitrogen use efficiency between millet/peanut intercropping and monocultures under different nitrogen (N) application rates.The objective of this study was to determine the yield advantages and economic benefits,as well as the appropriate N application rate,of millet/peanut intercropping.A two-yearfield experiment was conducted with three cropping patterns (monoculture millet,monoculture peanut and millet/peanut intercropping) and four N rates (0,75,150 and 225 kg ha^(-1)).The results showed that the land equivalent ratio (LER) and net effect (NE) of the intercropping system reached their highest levels at the N input of 150 kg ha^(-1)in 2018 and 2019 (1.04 for LER,0.347 Mg ha^(-1)for NE,averaged across two years).Millet was the dominant crop in the intercropping system (aggressivity of millet and peanut (Amp)>0,competitive ratio of millet and peanut (CRmp)>1),and millet yields achieved their highest values at N inputs of 225 kg ha^(-1)for monoculture and 150 kg ha^(-1)for intercropping.NUE reached its highest levels with N inputs of 150 kg ha^(-1)for all planting patterns over the two years.Intercropping combined with an N input of 150 kg ha^(-1)achieved the highest net income of 2 791 USD ha^(-1),with a benefit-cost ratio of 1.56,averaged over the two years.From the perspective of economics and agricultural sustainable development,millet/peanut intercropping at 150 kg N ha^(-1)seems to be a promising alternative to millet or peanut monoculture. 展开更多
关键词 MILLET PEANUT intercropPING N input yield economics
下载PDF
Performance of Maize (Zea mays L.) and Land Equivalent Ratio under Maize-Groundnut (Arachis hypogea L.) Intercropping System
11
作者 Kwadwo Gyasi Santo Fuseini Bawaror Bugilla +4 位作者 Abdul Aziz Khalid Kwabena Atakora Muntala Abdulai Daniel Ntiamoah Afreh Patrick Mawuenyegan Norshie 《Agricultural Sciences》 2023年第9期1292-1320,共29页
Soil fertility continues to decline in Ghana due to unsustainable human activities like bush burning, quarrying, improper farming practices, among others. To resolve this challenge, crop farmers resort to continuous u... Soil fertility continues to decline in Ghana due to unsustainable human activities like bush burning, quarrying, improper farming practices, among others. To resolve this challenge, crop farmers resort to continuous use of mineral fertilizers in Ghana, which contaminates the environment and makes crop farming less sustainable and productive. One of the strategies to improve soil fertility and productivity for sustainable crop yields is intercropping. Studies were, therefore, undertaken at Miminaso in the Ejura-Sekyedumase municipality of Ashanti Region of Ghana during the 2020 cropping seasons to determine the effects of spatial row arrangement and time of planting maize and groundnut intercrops on productivity of maize and land equivalent ratio (LER). One row of maize and one row of groundnut (1M1G), one row of maize and two rows of groundnut (1M2G), two rows of maize and one row of groundnut (2M1G), two rows of maize and two rows of groundnut (2M2G), sole maize (M) and sole groundnut (G) were factorially arranged with concurrent planting of intercrops (0 WAP), planting groundnut one week after planting maize (1 WAP) and planting groundnut two weeks after planting maize (2 WAP) in a Randomized Complete Block Design with three replicates. There were significant treatment interaction (P < 0.05) effects for shelling percentage for maize in both seasons of the trial. In the major season of 2020, the highest shelling percentage of 79.30% was associated with 0 WAP × M, while in the minor season of 2020, the highest shelling percentage of 75.02% was recorded by 0 WAP × 2M1G. The treatment interaction effects for maize grain yield were significant only in the minor season of 2020 with the highest maize grain yield of 6341 kg/ha being produced by the sole maize treatment, followed by 1 WAP × 2M2G (6152 kg/ha). The highest LER of 3.05 was associated with 1 WAP × 2M2G in the minor season of 2020. Planting groundnuts within the first week of planting maize (1 WAP) increased maize seed yield and LER in two rows of maize and two rows of groundnut (2M2G) row arrangements. 展开更多
关键词 intercropPING MAIZE GROUNDNUT YIELD
下载PDF
Effect of Dandelion(Taraxacum mongolicum Hand.-Mazz.)Intercropping with Different Plant Spacing on Blight and Growth of Pepper(Capsicum annuum L.)
12
作者 Peixin Li Hanbing Liu +9 位作者 Yingtong Chen Xin Zhang Ning Cao Ying Sun Meimei Jia Mengran Wu Xuejiao Tong Xinmei Jiang Xihong Yu Yao Cheng 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第8期2227-2244,共18页
Intercropping of crops that can secrete bacteriostatic active substances can not only inhibit the occurrence of disease but also have an important effect on plant growth.However,the effects of dandelion intercropping ... Intercropping of crops that can secrete bacteriostatic active substances can not only inhibit the occurrence of disease but also have an important effect on plant growth.However,the effects of dandelion intercropping on pepper blight control and pepper growth remain unclear.In this study,the control effect of dandelion on pepper blight was studied by inoculating the pepper leaves with Phytophthora infestans,and it also discusses the correlation of the occurrence of pepper epidemic disease with the pepper canopy environment,soil environment,pepper photo-synthesis,and yield index.The results showed that best plant distance for dandelion intercropping was 20 cm(P20),and the control effect reached 43.31%.As compared to the CK,SOD enzyme,POD enzyme,and PAL enzyme were significantly up-regulated during the growth of pepper;chlorophyll content in pepper leaves was significantly increased;photosynthetic characteristics were significantly increased;stem diameter and yield of crop pepper were effectively improved;and the quality of the pepper product was better,but intercropping dandelion resulted in a significant decrease of nutrients in the soil environment of pepper,so a reasonable intercropping distance was needed.The correlation analysis shows that the incidence of pepper blight(A)was significantly positively correlated with soil temperature(Q),intercellular carbon dioxide(L),and canopy air temperature(O).The incidence of capsicum blight(A)was significantly negatively correlated with chlorophyll content(F),net photo-synthetic rate(K),stomatal conductance(M),ww rate(N),soil sucrase activity(W),vitamin C(AB),and leaf PAL enzyme(J).Finally,it was deduced that intercropping dandelion could effectively control the occurrence of pepper blight while also demonstrating a complex interaction with the pepper growing environment. 展开更多
关键词 intercropPING pepper blight DANDELION plant growth correlation analysis
下载PDF
Cassava Groundnut Intercropping: A Sustainable Land Management Practice for Increasing Crop Productivity and Organic Carbon Stock on Smallholder Farms
13
作者 Keiwoma M. Yila Mohamed S. Lebbie +3 位作者 Abdul R. Conteh Mohamed S. Kamara Lamin I. Kamara Mathew L. S. Gboku 《Agricultural Sciences》 CAS 2023年第1期73-87,共15页
Cassava-groundnut intercropping is not a common practice among smallholder farmers in Sierra Leone even though both crops are well suited for intercropping. On-farm trials were conducted in three locations (Bai Largor... Cassava-groundnut intercropping is not a common practice among smallholder farmers in Sierra Leone even though both crops are well suited for intercropping. On-farm trials were conducted in three locations (Bai Largor, Bassah, and Njala Kanima) in the Moyamba district during the 2021 cropping season to investigate the efficacy of cassava-groundnut intercropping for increasing crop productivity and soil organic carbon stock on smallholder farms in the Moyamba district, Southern Sierra Leone. The experimental design was a randomized complete block design in three replications with treatments of sole groundnut, sole cassava and cassava-groundnut intercropping. Data on the yield and yield components of cassava and groundnut were analysed using the PROC MIXED procedure of SAS 9.4 and means were compared using the standard error of difference (SED). The above-ground biomass, number of roots per plant, and fresh root yield of cassava were not significantly (p > 0.05) affected by the cassava-based cropping system. Averaged across locations, intercropping cassava with groundnut decreased the above-ground biomass, the number of roots per plant, and fresh root yield of cassava by 17%, 11%, and 17%, respectively. The above-ground biomass, number of pods per plant and fresh pod yield of groundnut were significantly (p 1), the highest net revenue and benefit-cost ratio. The benefit-cost ratio was also favourable for the sole cassava (BCR > 1) but not favourable for the sole groundnut (BCR < 1). Averaged across locations, intercropping cassava with groundnut increased the benefit-cost ratio by 121% and 13% when compared to the sole groundnut and sole cassava. In the event of a 40% yield loss for the cassava and groundnut, the benefit-cost ratio was favourable (1.12) only for the cassava groundnut intercropping system. The net soil organic carbon stock was favourable only for the cassava-groundnut intercrop. Averaged across locations, the net soil organic carbon for the cassava-groundnut intercropping increased by 3.4% when compared to the baseline within one cropping cycle of the cassava (12 months). The results confirm that cassava-groundnut intercropping is a sustainable land management practice that could enhance crop productivity and soil organic carbon stock on smallholder farms. 展开更多
关键词 Benefit-Cost Ratio Cassava-Groundnut intercropping Land Equivalent Ratio Soil Organic Carbon Sustainable Land Management
下载PDF
Evaluation of the Productivity of Intercropping Plantain Cultivar (PITA 3) Fertilized with Two Types of Manure, under Coconut Tree Based (Cocos nucifera L.), on the Tertiary Sands of Côte d’Ivoire
14
作者 Pierre-Marie Janvier Coffi Joséphine Tamia Ama +3 位作者 Thierry Tacra Lekadou Siaka Traore Charly Fernand Agoh Didier Martial Saraka Yao 《Agricultural Sciences》 2023年第10期1405-1419,共15页
Pressure on land tenure is having a negative impact on the coconut sector, reducing farmers’ incomes. Intercropping cultivars plantain under coconut based has been considered as a solution to this problem. The aim of... Pressure on land tenure is having a negative impact on the coconut sector, reducing farmers’ incomes. Intercropping cultivars plantain under coconut based has been considered as a solution to this problem. The aim of this work is to diversify the sources of income for coconut growers. The plantain variety PITA 3, popularised by the CNRA, was grown in coconut inter-rows (PB113<sup>+</sup>), with two types of manure (chemical, organic). Six (06) treatments D1, D2, D3, D4, D5 and D6 were studied. In the tenth month after planting, treatment D3, which included banana plants fertilised with 9 kg of manure/plant, got the best agromorphological performance: height (264.08 cm), neck circumference (57.68 cm) and 12 leaves. In terms of production parameters, D3 banana plants had a shorter production cycle (347 days) and the highest diet mass (9.3 kg). However, the plants that received no fertiliser (D6) showed stunted growth and were unable to produce brunch. The fertilization of plantain with 10 t/ha of laying hen droppings permitted good development and production of plantains on tertiary sands. 展开更多
关键词 intercropPING COCONUT Plantain PITA 3 MANURE Tertiary Sands
下载PDF
Effects of Sweet Potato Rotation and Intercropping on the Microbial Community of Rhizosphere Soil
15
作者 Qiguo HU Yajun LIU +3 位作者 Wenjing WANG Qi WANG Honggang WANG Fengli CHU 《Agricultural Biotechnology》 CAS 2023年第2期105-110,116,共7页
To reveal the response mechanism of soil microbial community in different planting systems of sweet potato,the effects of rotation and intercropping on microbial community structure and carbon source utilization capac... To reveal the response mechanism of soil microbial community in different planting systems of sweet potato,the effects of rotation and intercropping on microbial community structure and carbon source utilization capacities of sweet potato rhizosphere soil were studied by using phospholipid fatty acid(PLFA)and ecological board(BIOLOG ECO)through field positioning experiments.In this study,three treatments were sweet potato continuous cropping,sweet potato-wheat rotation,and sweet potato-corn intercropping.The main results showed that compared with the sweet potato continuous cropping treatment,sweet potato rotation and intercropping changed the PLFA biomass of soil microorganisms;the contents of bacteria increased by 21.82%and 38.77%,respectively(P<0.05);the contents of actinomycetes increased by 6.98%and 12.77%,and the biomass of Gram-positive bacteria increased by 28.60%and 63.44%,respectively;and the biomass of Gram-negative bacteria increased by 18.21%and 22.29%,and the fungal contents decreased by 16.60%and 13.03%,respectively.With the extension of culture time,the average well color development(AWCD value)of sweet potato-corn intercropping was significantly higher than other two treatments.The utilization capacities of carboxylic acid compounds,polymers,carbohydrates,amino acids,and amines in the sweet potato-corn intercropping treatment were significantly increased by 17.28%,14.67%,54.17%,36.62%,and 20.00%,respectively,compared with the sweet potato continuous cropping treatment.The results of the multivariate analysis(RDA)showed that the changes of soil microbial community structure and functional diversity were controlled by many factors,and the soil available potassium and total nitrogen were the main driving factors.However,sweet potato-wheat rotation and sweet potato-corn intercropping could optimize the soil microbial community structure and enhance the microbial functional diversity,and the effect of sweet potato-corn intercropping treatment was better. 展开更多
关键词 Sweet potato ROTATION intercropPING Microbial community
下载PDF
高寒区氮添加和间作种植互作对燕麦和豌豆根系构型影响的研究 被引量:4
16
作者 鲍根生 李媛 +2 位作者 冯晓云 张鹏 孟思宇 《草业学报》 CSCD 北大核心 2024年第3期73-84,共12页
种间根系的相互作用是禾豆间作体系系统生产力提升的关键途径,外源氮素添加也能显著改变植物根系构型。然而,有关氮添加和间作种植方式对燕麦和豌豆根系构型影响的研究鲜有报道。基于此,本研究以燕麦和豌豆为对象,比较氮添加和不同间作... 种间根系的相互作用是禾豆间作体系系统生产力提升的关键途径,外源氮素添加也能显著改变植物根系构型。然而,有关氮添加和间作种植方式对燕麦和豌豆根系构型影响的研究鲜有报道。基于此,本研究以燕麦和豌豆为对象,比较氮添加和不同间作种植方式对燕麦和豌豆生物量、根系形态及构型的影响。结果表明:1)高氮隔行间作燕麦地上和地下生物量最高,而高氮单播豌豆生物量最高;2)高氮隔行间作燕麦除根体积和根尖数外,其他根系形态参数显著高于单播燕麦,高氮单播豌豆的根表面积、根体积和根尖数最高,而未添加氮单播豌豆的分叉数、内部和外部连接数最高;3)高氮间作燕麦拓扑指数和分形维数较高,未添加氮单播豌豆分形维数较高;4)氮添加和间作种植可增加燕麦根体积、根表面积、外部连接数和促进侧根生长,而间作种植和氮添加却降低豌豆根系连接数、根尖数、内部连接数和抑制侧根发育。由此可见,氮添加和间作种植通过增加燕麦根系与土壤接触面积强化燕麦获取土壤的能力,进而使间作燕麦生物量快速增加,这将为燕麦和豌豆间作体系中燕麦常表现出强竞争力和积累高生物量提供直接证据。 展开更多
关键词 燕麦 豌豆 间作 根系形态 拓扑结构
下载PDF
滴灌下氮肥减量配施生物炭对玉米大豆间作系统光合特性和产量的影响 被引量:1
17
作者 秦德志 崔文芳 +3 位作者 陈静 刘剑 秦丽 严海欧 《大豆科学》 CAS CSCD 北大核心 2024年第3期332-341,共10页
为研究氮肥减量结合生物炭对玉米大豆间作群体光合特性和产量的影响,设置不同种植模式(玉米单作、大豆单作、玉米大豆间作)、生物炭(2,4,6 t·hm^(-2))、氮肥减量(165,210,255 kg·hm^(-2))三因素试验,采用正交试验设计方法,探... 为研究氮肥减量结合生物炭对玉米大豆间作群体光合特性和产量的影响,设置不同种植模式(玉米单作、大豆单作、玉米大豆间作)、生物炭(2,4,6 t·hm^(-2))、氮肥减量(165,210,255 kg·hm^(-2))三因素试验,采用正交试验设计方法,探讨不同种植模式氮肥减量配施生物炭的适宜用量。结果表明:单作与间作模式玉米适宜的用量分别为氮肥210与255 kg·hm^(-2),生物炭用量均为4 t·hm^(-2)。间作系统产量达到13395 kg·hm^(-2),较单作玉米下降20.13%,间作玉米、大豆较相应单作产量分别下降35.69%和56.39%,有效株数低是导致间作玉米产量下降的主要原因,而单位面积株数与单株粒数的合理调控是决定间作大豆产量高低的关键因素。间作处理IN3C2(氮肥225 kg·hm^(-2)、生物炭4 t·hm^(-2))玉米的Pn从大口期到灌浆期持续升高,在灌浆期达到峰值,大豆从开花期经历结荚期到鼓粒期持续升高,在鼓粒期达到峰值,较其它处理具有显著光合优势,且大豆在结荚期和鼓粒期表现显著的边际优势。综上,滴灌下,氮肥减量与生物炭配施,单作和间作玉米较优的氮肥用量分别为210和255 kg·hm^(-2),生物炭为4 t·hm^(-2)。 展开更多
关键词 玉米 大豆 间作 光合特性 产量
下载PDF
多样化种植对提升耕地质量的作用:进展与展望 被引量:3
18
作者 田慎重 管西林 +5 位作者 宁堂原 孙涛 张玉凤 边文范 董亮 高新昊 《土壤学报》 CAS CSCD 北大核心 2024年第3期619-634,共16页
多样化种植是现代生态农业的重要举措之一,对提高生物多样性、生态服务功能和土壤质量等具有重要意义。在全球粮食供给紧张和耕地短缺背景下,多样化种植在提升我国耕地质量和保障粮食安全中将会发挥越来越重要的作用。但现有研究对多样... 多样化种植是现代生态农业的重要举措之一,对提高生物多样性、生态服务功能和土壤质量等具有重要意义。在全球粮食供给紧张和耕地短缺背景下,多样化种植在提升我国耕地质量和保障粮食安全中将会发挥越来越重要的作用。但现有研究对多样化种植的理解多集中在提高生物多样性和发挥生态功能等方面,对其提升耕地质量的作用关注较少,特别是多样化种植如何通过改善土壤物理、化学、生物多样性来提高耕地质量和维持土壤健康方面的理解还较为局限。本文在总结多样化种植的内涵及对促进耕地土壤健康和提高生态服务功能作用的基础上,系统梳理了多样化种植对改善土壤物理、化学、生物多样性等方面的作用研究进展,展望了未来以提升耕地质量为核心发展多样化种植亟需关注的方向和研究重点,以期为多样化种植在我国耕地质量提升策略中发挥更大作用提供参考。 展开更多
关键词 多样化种植 耕地质量 土壤健康 轮作 间作
下载PDF
玉米大豆间作干物质积累和氮磷吸收利用的边际效应 被引量:1
19
作者 秦德志 崔文芳 +5 位作者 陈静 刘剑 秦丽 王利平 赵永来 王利鹤 《西南农业学报》 CSCD 北大核心 2024年第3期552-560,共9页
【目的】研究间作对玉米大豆干物质积累及氮磷吸收利用特性的影响机制,对实现玉米、大豆间作高产高效具有重要指导意义。【方法】试验设玉米单作、大豆单作、玉米大豆间作3种种植方式,分别测定玉米大口期、吐丝期和成熟期的植株氮磷积... 【目的】研究间作对玉米大豆干物质积累及氮磷吸收利用特性的影响机制,对实现玉米、大豆间作高产高效具有重要指导意义。【方法】试验设玉米单作、大豆单作、玉米大豆间作3种种植方式,分别测定玉米大口期、吐丝期和成熟期的植株氮磷积累量和大豆开花期、结荚期和成熟期的植株氮磷积累量,研究间作对玉米、大豆不同器官干物质积累及氮磷吸收积累特性,明确氮磷吸收利用的边际效应。【结果】与单作相比,间作降低了玉米干物质和氮磷的积累,促进了根系吸收氮向籽粒的分配;降低了大豆干物质积累,尤其对中行的影响大于边行,边行干物质、氮磷积累体现边际效应优势;与单作体系相比,间作使玉米大豆植株茎叶营养器官氮转移量均减少,分别降低22.13%、29.85%,转运氮对玉米籽粒氮的贡献率分别下降5.11%、17.45%,且根系吸收氮对籽粒氮的贡献率均高于转运氮对籽粒氮的贡献率。间作能够有效提高系统氮利用效率,较玉米、大豆单作分别提高2.34%、4.62倍,使系统氮效率较单作大豆提高26.82%,较单作玉米降低10.16%,玉米在系统产量中占主导地位,占系统产量的82.27%,土地当量比(LER)达到1.47,系统产量为13110 kg/hm^(2),较单作玉米下降3.96%。【结论】间作优势主要在于促进根系吸收氮向籽粒的分配,提高氮的利用效率。 展开更多
关键词 玉米 大豆 间作 氮利用效率 边际效应
下载PDF
小麦玉米间作氮肥后移利于减少土壤蒸发提高水分利用效率 被引量:1
20
作者 任强 徐珂 +5 位作者 樊志龙 殷文 范虹 何蔚 胡发龙 柴强 《中国农业科学》 CAS CSCD 北大核心 2024年第7期1295-1307,共13页
【目的】针对绿洲灌区小麦玉米间作水分高效利用潜力挖掘不足,制约多熟种植稳定发展的问题,拟通过探明不同氮肥后移比例对小麦玉米间作耗水特性及水分利用的影响,为绿洲灌溉区水分高效利用麦玉间作模式创建提供理论依据。【方法】试验于... 【目的】针对绿洲灌区小麦玉米间作水分高效利用潜力挖掘不足,制约多熟种植稳定发展的问题,拟通过探明不同氮肥后移比例对小麦玉米间作耗水特性及水分利用的影响,为绿洲灌溉区水分高效利用麦玉间作模式创建提供理论依据。【方法】试验于2020—2021年在甘肃农业大学绿洲农业综合试验站开展,设小麦玉米间作、单作小麦和单作玉米3种种植模式,针对玉米设不施氮(N0)、氮肥后移20%(N1)、氮肥后移10%(N2)和传统施氮氮肥不后移(N3)4个处理,间作玉米和单作玉米各施氮处理下总施氮量分别为210和360kg·hm^(-2),研究不同种植制度及氮肥后移比例对小麦和玉米的土壤蒸发、耗水特性及水分利用的影响。【结果】小麦、玉米独立生长阶段间作处理的棵间蒸发量大于单作,间作小麦棵间蒸发较单作小麦增大15.9%—16.7%,间作玉米棵间蒸发较单作玉米增大5.4%—14.7%,麦玉共生期间作棵间蒸发量较单作加权降低4.6%—6.1%;全生育期棵间蒸发总量表现为:小麦玉米间作最大、单作玉米次之、单作小麦最小,在间作模式中,氮肥后移20%处理棵间蒸发量较传统施氮降低6.5%,且小麦带棵间蒸发量较玉米带增大12.6%—17.3%,是间作系统棵间蒸发的主要来源。间作系统中氮肥后移20%和后移10%处理全生育期耗水量较传统施氮分别降低34.3和18.9 mm,E/ET与传统施氮差异不显著。间作系统籽粒产量较单作加权平均提高21.1%—39.0%,间作系统氮肥后移20%处理籽粒产量较传统施氮提高28.8%,其中间作小麦、间作玉米氮肥后移20%处理较传统施氮分别提高24.3%、30.8%。间作种植模式氮肥后移处理水分利用效率较单作加权平均显著提高15.0%、12.3%,其中氮肥后移20%处理较传统施氮提高35.9%,氮肥后移10%处理较之提高19.3%。【结论】小麦玉米间作种植模式结合氮肥后移20%能减少土壤蒸发和全生育期耗水量,提高产量和水分生产力,是绿洲灌区小麦玉米间作高产高效生产可采用的施氮制度。 展开更多
关键词 间作 氮肥后移 棵间蒸发 产量 水分利用效率
下载PDF
上一页 1 2 208 下一页 到第
使用帮助 返回顶部