The lignite samples collected from Giral lignite field of Barmer basin have been subjected to petrological investigation. The data generated has been discussed to understand the evolution of the paleomires of these li...The lignite samples collected from Giral lignite field of Barmer basin have been subjected to petrological investigation. The data generated has been discussed to understand the evolution of the paleomires of these lignites. The present study reveals that these low rank C coals are chiefly composed of huminite group macerals, mainly telohuminite and detrohuminite, while liptinite and inertinite group macerals occur in subordinate amounts. Not much variation in the maceral composition from Seam-I to Seam-VIII has been observed. Barmer lignites are characterized by a very high GI (〉10) and moderate TPI indicating topogenous mire in the basin which was permanently flooded. The GI and TPI values and the petrography-based facies critical models indicate that these lignites originated mostly under wet forest swamp to clastic marsh having telmatic to limno-telmatic conditions with a moderate rate of subsidence and a very slow fall in ground water table. Further, the GWI and VI values are suggestive of mesotrophic to rheotrophic hydrological conditions having the dominance of herbaceous to marginal aquatic vegetation. There were spells of periodic drowning of peat especially during the formation of Seam-VII. Moderately high concentration of calcium in these lignites along with the presence of framboidal pyrite indicate enhanced sulphate-reducing bacterial activity present in carbonate and sulphate-rich waters in the basin during peat formation.展开更多
In this study, tropical peat swamp soils from Giam Siak Kecil-Bukit Batu Biosphere Reserve (GSKBB) in Indonesia was evaluated to assess the impact of oil palm and rubber plantations on this unique organic soil through...In this study, tropical peat swamp soils from Giam Siak Kecil-Bukit Batu Biosphere Reserve (GSKBB) in Indonesia was evaluated to assess the impact of oil palm and rubber plantations on this unique organic soil through comparisons with soils from a natural forest using a polyphasic approach (chemical and molecular microbial assays). Changes in the ammonium, nitrate and phosphate concentration were observed in soils converted to agricultural use. Soil enzyme activities in plantation soils showed reduced β-glucosidase, cellobiohydrolase and acid phosphatase activities (50% - 55% decrease). PCR-DGGE based analysis showed that the soil bacterial community from agricultural soils exhibited the lowest similarity amongst the different microbial groups (fungi and Archaea) evaluated (34% similarity to the natural forest soil). Shannon Diversity index values showed that generally the conversion of tropical peatland natural forest to rubber plantation resulted in a greater impact on microbial diversity (ANOVA p < 0.05). Overall, this study indicated substantial shifts in the soil microbial activity and diversity upon conversion of natural peatland forest to agriculture, with a greater change being observed under rubber plantation compared to oil palm plantation. These findings provided important data for future peatland management by relating changes in the soil microbial community and activities associated to agricultural practices carried out on peatland.展开更多
Given that organic soil is a complex substrate and there are many environmental factors which directly or indirectly control its decomposition processes, the use of standard substrate simplify the system in that the e...Given that organic soil is a complex substrate and there are many environmental factors which directly or indirectly control its decomposition processes, the use of standard substrate simplify the system in that the effect of substrate quality could be eliminated and influence of certain environmental conditions such as edaphic factors, acidity and moisture could be focused on. In addition to the forest floor, decomposition potential down the peat profile can also be examined. Cotton strip assay was used to estimate decomposition potentials in tropical peat swamp occupied by different Shorea Albida peat swamp forest communities, The' Alan Batu' , the ' Alan Bunga' , the' Alan Padang' and the 'mixed Alan'forest communities. Greatest decay rates on the peat surface took place during the wet period. The moist condition of the wet months appeared to favour the growth and stimulate activities of decomposer population and soil invertebrates.Generally, 50% of cotton tensile loss is achieved after four weeks of exposure. The results suggest that cellulose decomposition is influenced by the environmental variables of hydrological regime, water-table fluctuation, aeration, moisture availability,waterlogging and the resultant anaerobiosis, peat depths, and micro-sites characteristics. Decomposition of cellulose is inhibited by waterlogging and the resultant anaerobiosis in thelower segment of the cotton strip during wet periods and under dry conditions in the surface segment of the cotton strip during periods of less rain.展开更多
The management of peat swamp forests in Malaysia contends with two major issues: forest fires and the effects of abandoned forest-logging drainage systems or canals. Forest fire occurs during low rainfall season relat...The management of peat swamp forests in Malaysia contends with two major issues: forest fires and the effects of abandoned forest-logging drainage systems or canals. Forest fire occurs during low rainfall season related to the local people activities. The drainage networks change the hydrological function of the intact forest ecosystem. A key function of the hydrological system in the undisturbed forest is to absorb water during rainfall season, thus delaying downstream runoff and preventing flash floods. The objective of the project described here is to restore the hydrological function of peat swamp forest (PSF) at Ayer Hitam North Forest Reserve (AHNFR) in Muar, Johor, Malaysia. The oil palm plantations, especially in the southern part of the area affect the forest reserve. Water flows out of the forest reserve through the drainage system constructed for managing these plantations. In 2016 and 2017, two water block structures or check dams were constructed near the boundaries of the forest reserve to hold the water and raise the groundwater level in the forest reserve. The implementation of the check dams at the two locations has conserved the groundwater level and subsequently, about 1.2 million m<sup>3</sup> of water was saved annually from leaving the forest reserve from each of the check dam. This project is also part of the Coca-Cola Company’s sustainability commitment for water strategy with the global that is to replenish 100% of the equivalent volume of water consumed in their products and production by 2020. Replenishment is the key sustainability commitment for the Company.展开更多
As one of the most important source rocks and reservoirs of unconventional natural gas, the sedimentary environment and mode of peat swamp(the predecessor of coal seam) is important to the coal seam's spatial distr...As one of the most important source rocks and reservoirs of unconventional natural gas, the sedimentary environment and mode of peat swamp(the predecessor of coal seam) is important to the coal seam's spatial distribution, material composition, hydrocarbon generation potential, reservoir physical properties, etc. To reveal the depositional characteristics and history of environmental change in a terrestrial basin during a period of peat accumulation, the Middle Jurassic aged #7 coal from Gaoquan in the Qaidam Basin(NW China) was investigated using sedimentology, maceral composition, geochemistry and sequence stratigraphy. Based on identification of the sedimentary shoreline break belt, wave energy depletion point and position of wave base, the peat swamp system can be subdivided into(1) lakeside plain,(2) low energy lakeshore,(3) high energy lakeshore, and(4) shallow lake subfacies. A new method for determining coal facies is proposed based on the combination of environmental parameters including oxidation-reduction levels, energy conditions and the influence of terrigneous sediments. The evolution of the coal seam shows that peat was deposited mainly in the low energy lakeshore and lakeside plain subfacies. Five types of sequence stratigrpahic surface and two types of parasequence were identified. Forced lake regressions and normal lake regressions are attributed as the causes of sequence boundaries. The sequence stratigraphic framework comprises six sequences and corresponding system tracts, and the curve of base-level for each demonstrates a characteristic initial period of slow rising followed by fast rising and then returning to slow rising. A model indicating the relationship among base-level changes, coal facies evolution, and the environmental features in the swamp is proposed that shows the environmental features of the swamp were controlled by both base-level changes and coal facies. Accompanying depositional environment changes from a lakeside plain to lakeshore and shallow lake caused by increasing rate of base-level rise, water paleosalinity, acidity and the percentage of woody plants decrease, and the bog type alters from the low marsh to raised bog.展开更多
We explored the potential use of combining wavelength-dispersive X-ray spectroscopy(WDX) and micromorphology of thin sections to identify minerals in peat soils. Peat soil minerals from three peats and swamps across G...We explored the potential use of combining wavelength-dispersive X-ray spectroscopy(WDX) and micromorphology of thin sections to identify minerals in peat soils. Peat soil minerals from three peats and swamps across Golestan Province in northern Iran were first characterized by micromorphological studies. Soils were composed mainly of quartz, muscovite, biotite, pyroxene,sericitized Fe-nodules, and iron-rich garnet. In addition,micromorphological results indicated that Galougah Coastal Swamp sections contained some inorganic residue with biological origin including oyster and limpet, which may be related to the swamp's location near Gorgan Gulf.In order to determine mineralogical properties of samples,twelve unknown grains were chosen for elemental concentration map studies. Quartz, garnet, ilmenite, calcite,and pyroxene in Suteh samples; epidote and Fe-nodule in Ghaleh-Ghafeh Peat Swamp; and barite, phyllosilicates,and calcite in Galougah were identified by WDX mapping of Si, Al, Fe, Ca, Mg, C, Ba, S, and Ti. Composition of the oysters' body was also analyzed by WDX for Si, Ca, Fe,and C. The results indicated that most of the minerals in all sections likely formed through weathering, inheriting their composition from the parent rock. This research suggests that merging micromorphology and SEM/WDX image techniques can be useful in confirming the presence of mineral particles in soil science.展开更多
Redox potential in the well developed tropical peat swamp in Brunei was studied for a year.Generally the redox potential measurements showed a large variation,ranging from-234 mV to 727 mV.The expected rise in redox v...Redox potential in the well developed tropical peat swamp in Brunei was studied for a year.Generally the redox potential measurements showed a large variation,ranging from-234 mV to 727 mV.The expected rise in redox values did not take place following the drop of water table during the dry months of June to September.The redox value at 100 cm depth indicated that the soil remained reduced throughout the year in spite of the lowering of water table below 150 cm in all sites during dry period.Similarly the redox values did not decrease rapidly following flooding when the water table rose to the surface.This phenomenon could be attributed to the topography of the peat dome which facilitated the fast lateral movement of water and thus promoted oxygen supply down the peat profile,though not great enough to reach the 100 cm depth.The rapid lateral flow of water in the outer Alan batu site facilitated aeration,but in the inner sites remained which was reduced because of the slower water movement.The slower initiation of the reducing condition was likely due to the presence of nitrate which has accumulated as a result of ammonium oxidation during the relatively long aerobic period.Differences in the distribution of redox potential with depth are possibly explained by the different permeability of peat affecting flow patterns and residence time of water.The nature and compactibility of the peat might have slowed the diffusion rates of O2 into the lower layer.Though the bulk density of the peat was low,the composition of the peat might influence the peat permeability and hydraulic conductivity.The tree trunks are not decomposed or large branches must have lowered permeability compared to the other peat material.展开更多
文摘The lignite samples collected from Giral lignite field of Barmer basin have been subjected to petrological investigation. The data generated has been discussed to understand the evolution of the paleomires of these lignites. The present study reveals that these low rank C coals are chiefly composed of huminite group macerals, mainly telohuminite and detrohuminite, while liptinite and inertinite group macerals occur in subordinate amounts. Not much variation in the maceral composition from Seam-I to Seam-VIII has been observed. Barmer lignites are characterized by a very high GI (〉10) and moderate TPI indicating topogenous mire in the basin which was permanently flooded. The GI and TPI values and the petrography-based facies critical models indicate that these lignites originated mostly under wet forest swamp to clastic marsh having telmatic to limno-telmatic conditions with a moderate rate of subsidence and a very slow fall in ground water table. Further, the GWI and VI values are suggestive of mesotrophic to rheotrophic hydrological conditions having the dominance of herbaceous to marginal aquatic vegetation. There were spells of periodic drowning of peat especially during the formation of Seam-VII. Moderately high concentration of calcium in these lignites along with the presence of framboidal pyrite indicate enhanced sulphate-reducing bacterial activity present in carbonate and sulphate-rich waters in the basin during peat formation.
文摘In this study, tropical peat swamp soils from Giam Siak Kecil-Bukit Batu Biosphere Reserve (GSKBB) in Indonesia was evaluated to assess the impact of oil palm and rubber plantations on this unique organic soil through comparisons with soils from a natural forest using a polyphasic approach (chemical and molecular microbial assays). Changes in the ammonium, nitrate and phosphate concentration were observed in soils converted to agricultural use. Soil enzyme activities in plantation soils showed reduced β-glucosidase, cellobiohydrolase and acid phosphatase activities (50% - 55% decrease). PCR-DGGE based analysis showed that the soil bacterial community from agricultural soils exhibited the lowest similarity amongst the different microbial groups (fungi and Archaea) evaluated (34% similarity to the natural forest soil). Shannon Diversity index values showed that generally the conversion of tropical peatland natural forest to rubber plantation resulted in a greater impact on microbial diversity (ANOVA p < 0.05). Overall, this study indicated substantial shifts in the soil microbial activity and diversity upon conversion of natural peatland forest to agriculture, with a greater change being observed under rubber plantation compared to oil palm plantation. These findings provided important data for future peatland management by relating changes in the soil microbial community and activities associated to agricultural practices carried out on peatland.
文摘Given that organic soil is a complex substrate and there are many environmental factors which directly or indirectly control its decomposition processes, the use of standard substrate simplify the system in that the effect of substrate quality could be eliminated and influence of certain environmental conditions such as edaphic factors, acidity and moisture could be focused on. In addition to the forest floor, decomposition potential down the peat profile can also be examined. Cotton strip assay was used to estimate decomposition potentials in tropical peat swamp occupied by different Shorea Albida peat swamp forest communities, The' Alan Batu' , the ' Alan Bunga' , the' Alan Padang' and the 'mixed Alan'forest communities. Greatest decay rates on the peat surface took place during the wet period. The moist condition of the wet months appeared to favour the growth and stimulate activities of decomposer population and soil invertebrates.Generally, 50% of cotton tensile loss is achieved after four weeks of exposure. The results suggest that cellulose decomposition is influenced by the environmental variables of hydrological regime, water-table fluctuation, aeration, moisture availability,waterlogging and the resultant anaerobiosis, peat depths, and micro-sites characteristics. Decomposition of cellulose is inhibited by waterlogging and the resultant anaerobiosis in thelower segment of the cotton strip during wet periods and under dry conditions in the surface segment of the cotton strip during periods of less rain.
文摘The management of peat swamp forests in Malaysia contends with two major issues: forest fires and the effects of abandoned forest-logging drainage systems or canals. Forest fire occurs during low rainfall season related to the local people activities. The drainage networks change the hydrological function of the intact forest ecosystem. A key function of the hydrological system in the undisturbed forest is to absorb water during rainfall season, thus delaying downstream runoff and preventing flash floods. The objective of the project described here is to restore the hydrological function of peat swamp forest (PSF) at Ayer Hitam North Forest Reserve (AHNFR) in Muar, Johor, Malaysia. The oil palm plantations, especially in the southern part of the area affect the forest reserve. Water flows out of the forest reserve through the drainage system constructed for managing these plantations. In 2016 and 2017, two water block structures or check dams were constructed near the boundaries of the forest reserve to hold the water and raise the groundwater level in the forest reserve. The implementation of the check dams at the two locations has conserved the groundwater level and subsequently, about 1.2 million m<sup>3</sup> of water was saved annually from leaving the forest reserve from each of the check dam. This project is also part of the Coca-Cola Company’s sustainability commitment for water strategy with the global that is to replenish 100% of the equivalent volume of water consumed in their products and production by 2020. Replenishment is the key sustainability commitment for the Company.
基金the National Natural Science Foundation of China (Nos. 41472131, 41772161)New Century Excellent Talents Fund of Chinese Ministry of Education (No. 2013102050020)
文摘As one of the most important source rocks and reservoirs of unconventional natural gas, the sedimentary environment and mode of peat swamp(the predecessor of coal seam) is important to the coal seam's spatial distribution, material composition, hydrocarbon generation potential, reservoir physical properties, etc. To reveal the depositional characteristics and history of environmental change in a terrestrial basin during a period of peat accumulation, the Middle Jurassic aged #7 coal from Gaoquan in the Qaidam Basin(NW China) was investigated using sedimentology, maceral composition, geochemistry and sequence stratigraphy. Based on identification of the sedimentary shoreline break belt, wave energy depletion point and position of wave base, the peat swamp system can be subdivided into(1) lakeside plain,(2) low energy lakeshore,(3) high energy lakeshore, and(4) shallow lake subfacies. A new method for determining coal facies is proposed based on the combination of environmental parameters including oxidation-reduction levels, energy conditions and the influence of terrigneous sediments. The evolution of the coal seam shows that peat was deposited mainly in the low energy lakeshore and lakeside plain subfacies. Five types of sequence stratigrpahic surface and two types of parasequence were identified. Forced lake regressions and normal lake regressions are attributed as the causes of sequence boundaries. The sequence stratigraphic framework comprises six sequences and corresponding system tracts, and the curve of base-level for each demonstrates a characteristic initial period of slow rising followed by fast rising and then returning to slow rising. A model indicating the relationship among base-level changes, coal facies evolution, and the environmental features in the swamp is proposed that shows the environmental features of the swamp were controlled by both base-level changes and coal facies. Accompanying depositional environment changes from a lakeside plain to lakeshore and shallow lake caused by increasing rate of base-level rise, water paleosalinity, acidity and the percentage of woody plants decrease, and the bog type alters from the low marsh to raised bog.
文摘We explored the potential use of combining wavelength-dispersive X-ray spectroscopy(WDX) and micromorphology of thin sections to identify minerals in peat soils. Peat soil minerals from three peats and swamps across Golestan Province in northern Iran were first characterized by micromorphological studies. Soils were composed mainly of quartz, muscovite, biotite, pyroxene,sericitized Fe-nodules, and iron-rich garnet. In addition,micromorphological results indicated that Galougah Coastal Swamp sections contained some inorganic residue with biological origin including oyster and limpet, which may be related to the swamp's location near Gorgan Gulf.In order to determine mineralogical properties of samples,twelve unknown grains were chosen for elemental concentration map studies. Quartz, garnet, ilmenite, calcite,and pyroxene in Suteh samples; epidote and Fe-nodule in Ghaleh-Ghafeh Peat Swamp; and barite, phyllosilicates,and calcite in Galougah were identified by WDX mapping of Si, Al, Fe, Ca, Mg, C, Ba, S, and Ti. Composition of the oysters' body was also analyzed by WDX for Si, Ca, Fe,and C. The results indicated that most of the minerals in all sections likely formed through weathering, inheriting their composition from the parent rock. This research suggests that merging micromorphology and SEM/WDX image techniques can be useful in confirming the presence of mineral particles in soil science.
文摘Redox potential in the well developed tropical peat swamp in Brunei was studied for a year.Generally the redox potential measurements showed a large variation,ranging from-234 mV to 727 mV.The expected rise in redox values did not take place following the drop of water table during the dry months of June to September.The redox value at 100 cm depth indicated that the soil remained reduced throughout the year in spite of the lowering of water table below 150 cm in all sites during dry period.Similarly the redox values did not decrease rapidly following flooding when the water table rose to the surface.This phenomenon could be attributed to the topography of the peat dome which facilitated the fast lateral movement of water and thus promoted oxygen supply down the peat profile,though not great enough to reach the 100 cm depth.The rapid lateral flow of water in the outer Alan batu site facilitated aeration,but in the inner sites remained which was reduced because of the slower water movement.The slower initiation of the reducing condition was likely due to the presence of nitrate which has accumulated as a result of ammonium oxidation during the relatively long aerobic period.Differences in the distribution of redox potential with depth are possibly explained by the different permeability of peat affecting flow patterns and residence time of water.The nature and compactibility of the peat might have slowed the diffusion rates of O2 into the lower layer.Though the bulk density of the peat was low,the composition of the peat might influence the peat permeability and hydraulic conductivity.The tree trunks are not decomposed or large branches must have lowered permeability compared to the other peat material.