Getting insight into the spatiotemporal distribution patterns of knowledge innovation is receiving increasing attention from policymakers and economic research organizations.Many studies use bibliometric data to analy...Getting insight into the spatiotemporal distribution patterns of knowledge innovation is receiving increasing attention from policymakers and economic research organizations.Many studies use bibliometric data to analyze the popularity of certain research topics,well-adopted methodologies,influential authors,and the interrelationships among research disciplines.However,the visual exploration of the patterns of research topics with an emphasis on their spatial and temporal distribution remains challenging.This study combined a Space-Time Cube(STC)and a 3D glyph to represent the complex multivariate bibliographic data.We further implemented a visual design by developing an interactive interface.The effectiveness,understandability,and engagement of ST-Map are evaluated by seven experts in geovisualization.The results suggest that it is promising to use three-dimensional visualization to show the overview and on-demand details on a single screen.展开更多
In this paper,a space-time correlation based fast regional spectrum sensing(RSS)scheme is proposed to reduce the time and energy consumption of traditional spatial spectrum sensing. The target region is divided into s...In this paper,a space-time correlation based fast regional spectrum sensing(RSS)scheme is proposed to reduce the time and energy consumption of traditional spatial spectrum sensing. The target region is divided into small meshes,and all meshes are clustered into highly related groups using the spatial correlation among them. In each group,some representative meshes are selected as detecting meshes(DMs)using a multi-center mesh(MCM)clustering algorithm,while other meshes(EMs)are estimated according to their correlations with DMs and the Markov modeled dependence on history by MAP principle. Thus,detecting fewer meshes saves the sensing consumption. Since two independent estimation processes may provide contradictory results,minimum entropy principle is adopted to merge the results. Tested with data acquired by radio environment mapping measurement conducted in the downtown Beijing,our scheme is capable to reduce the consumption of traditional sensing method with acceptable sensing performance.展开更多
A short note based on the homogeneous 5D space-time topological mappings is extended to cover DNAs of viruses and how the body’s immune system can be enhanced to recognize and remove it.
We generalized an constructing method of noncoherent unitary space time codes (N-USTC) over Rayleigh flat fading channels. A family of N-USTCs with T symbol peroids, M transmit and N receive antennas was constructed b...We generalized an constructing method of noncoherent unitary space time codes (N-USTC) over Rayleigh flat fading channels. A family of N-USTCs with T symbol peroids, M transmit and N receive antennas was constructed by the exponential mapping method based on the tangent subspace of the Grassmann manifold. This exponential mapping method can transform the coherent space time codes (C-STC) into the N-USTC on the Grassmann manifold. We infered an universal framework of constructing a C-STC that is designed by using the algebraic number theory and has full rate and full diversity (FRFD) for t symbol periods and same antennas, where M, N, T, t are general positive integer. We discussed the constraint condition that the exponential mapping has only one solution, from which we presented a approach of searching the optimum adjustive factor αopt that can generate an optimum noncoherent codeword. For different code parameters M, N, T, t and the optimum adjustive factor αopt, we gave the simulation results of the several N-USTCs.展开更多
A force with an acceleration that is equal to multiples greater than the speed of light per unit time is exerted on a cloud of charged particles. The particles are resultantly accelerated to within an infinitesimal fr...A force with an acceleration that is equal to multiples greater than the speed of light per unit time is exerted on a cloud of charged particles. The particles are resultantly accelerated to within an infinitesimal fraction of the speed of light. As the force or acceleration increases, the particles’ velocity asymptotically approaches but never achieves the speed of light obeying relativity. The asymptotic increase in the particles’ velocity toward the speed of light as acceleration increasingly surpasses the speed of light per unit time does not compensate for the momentum value produced on the particles at sub-light velocities. Hence, the particles’ inertial mass value must increase as acceleration increases. This increase in the particles’ inertial mass as the particles are accelerated produce a gravitational field which is believed to occur in the oscillation of quarks achieving velocities close to the speed of light. The increased inertial mass of the density of accelerated charged particles becomes the source mass (or Big “M”) in Newton’s equation for gravitational force. This implies that a space-time curve is generated by the accelerated particles. Thus, it is shown that the acceleration number (or multiple of the speed of light greater than 1 per unit of time) and the number of charged particles in the cloud density are surjectively mapped to points on a differential manifold or space-time curved surface. Two aspects of Einstein’s field equations are used to describe the correspondence between the gravitational field produced by the accelerated particles and the resultant space-time curve. The two aspects are the Schwarzchild metric and the stress energy tensor. Lastly, the possibility of producing a sufficient acceleration or electromagnetic force on the charged particles to produce a gravitational field is shown through the Lorentz force equation. Moreover, it is shown that a sufficient voltage can be generated to produce an acceleration/force on the particles that is multiples greater than the speed of light per unit time thereby generating gravity.展开更多
With rapid development of air transportation,the airspace structure of the future will need to be flexible and dynamic to accommodate the increase in traffic demand.The corridors-in-the-sky has become a new technology...With rapid development of air transportation,the airspace structure of the future will need to be flexible and dynamic to accommodate the increase in traffic demand.The corridors-in-the-sky has become a new technology to support the full exploitation and utilization of airspace resources.This paper proposes a method of designing corridor,identifying congestion state,and analyzing the influence of air routes’traffic flow.From this,we have reached a number of conclusions.(1)The congestion periods present the multi-peak"wavy"scattered distributions and the peaks back-end agglomeration characteristics in the whole day.(2)The congestion segments present the structural characteristics of unbalanced coverage and concentrated distribution to the crossing points.The corridors with high congestion level present as an italic"N-shaped"frame,which presents incomplete penetration of short segments.(3)For the temporal and spatial interaction,there are two types of congestion segments,and there are some common congestion periods in different congestion segments of multiple corridors.The high-density air route plays a relatively decisive role in corridor congestion,and the influence of two directions is unbalanced.This research can provide a basis for the dynamic evaluation of China’s airspace resources and corridors construction in the future.展开更多
Aiming at the time redundancy in the fiat panel display (FPD) imaging process, the paper studied some problems for FPD gray scale controlling based on the fraetal theory, dissertates the construction of the space-ti...Aiming at the time redundancy in the fiat panel display (FPD) imaging process, the paper studied some problems for FPD gray scale controlling based on the fraetal theory, dissertates the construction of the space-time mapping topology architecture, the proposition of optimal scanning structure for FPD's gray imaging, and the creation of the fractal theoretic model. Then the logic implementation and system application are presented based on the fraetal model of the optimal scan architecture, and the application results achieved target of eliminating time redundancy and increasing the scanning availability. The novel control mode that the fractal scanning IP core described with Verilog language embedded in the FPGA hardware frame can efficiently increase the imaging gray scales and quality in the FPDs scanning controller and speed up the frame frequency of display system.展开更多
The purpose of this work is to associate the channel encoder called ‘trellis-coded modulation with Ungerboeck-Gray mapping’ (TCM-UGM) to ‘space–time block code’ (STBC), in order to study its performance to correc...The purpose of this work is to associate the channel encoder called ‘trellis-coded modulation with Ungerboeck-Gray mapping’ (TCM-UGM) to ‘space–time block code’ (STBC), in order to study its performance to correct the transmission errors of a JPEG image. The performance of the proposed scheme is evaluated in senses of bit error rate (BER), frame error rate (FER) and peak signal-to-noise ratio (PSNR) of the reconstructed image. Compared to the association TCM/STBC for a throughput of 2 bits/s/Hz, TCM-UGM/STBC permits to obtain a PSNR gain up to 2 dB.展开更多
A family of space-time block codes(STBCs)for systems with even transmit antennas and any number of receive antennas is proposed.The new codeword matrix is constructed by concatenating Alamouti space-time codes to form...A family of space-time block codes(STBCs)for systems with even transmit antennas and any number of receive antennas is proposed.The new codeword matrix is constructed by concatenating Alamouti space-time codes to form a block diagonal matrix,and its dimension is equal to the number of transmit antennas.All Alamouti codes in the same codeword matrix have the same information;thus,full transmit diversity can be achieved over fading channels.To improve the spectral efficiency,multi-level modulations such as multi-quadrature amplitude modulation(M-QAM)are employed.The symbol mapping diversity is then exploited between transmissions of the same information from different antennas to improve the bit error rate(BER)performance.The proposed codes outperform the diagonal algebraic space-time(DAST)codes presented by Damen[Damen et al.IEEE Transactions on Information Theory,2002,48(3):628–636]when they have the same spectral efficiency.Also,they outperform the 1/2-rate codes from complex orthogonal design.Moreover,compared to DAST codes,the proposed codes have a low decoding complexity because we only need to perform linear processing to achieve single-symbol maximum-likelihood(ML)decoding.展开更多
文摘Getting insight into the spatiotemporal distribution patterns of knowledge innovation is receiving increasing attention from policymakers and economic research organizations.Many studies use bibliometric data to analyze the popularity of certain research topics,well-adopted methodologies,influential authors,and the interrelationships among research disciplines.However,the visual exploration of the patterns of research topics with an emphasis on their spatial and temporal distribution remains challenging.This study combined a Space-Time Cube(STC)and a 3D glyph to represent the complex multivariate bibliographic data.We further implemented a visual design by developing an interactive interface.The effectiveness,understandability,and engagement of ST-Map are evaluated by seven experts in geovisualization.The results suggest that it is promising to use three-dimensional visualization to show the overview and on-demand details on a single screen.
基金supported in part by National Natural Science Foundation of China under Grants(61525101,61227801 and 61601055)in part by the National Key Technology R&D Program of China under Grant 2015ZX03002008
文摘In this paper,a space-time correlation based fast regional spectrum sensing(RSS)scheme is proposed to reduce the time and energy consumption of traditional spatial spectrum sensing. The target region is divided into small meshes,and all meshes are clustered into highly related groups using the spatial correlation among them. In each group,some representative meshes are selected as detecting meshes(DMs)using a multi-center mesh(MCM)clustering algorithm,while other meshes(EMs)are estimated according to their correlations with DMs and the Markov modeled dependence on history by MAP principle. Thus,detecting fewer meshes saves the sensing consumption. Since two independent estimation processes may provide contradictory results,minimum entropy principle is adopted to merge the results. Tested with data acquired by radio environment mapping measurement conducted in the downtown Beijing,our scheme is capable to reduce the consumption of traditional sensing method with acceptable sensing performance.
文摘A short note based on the homogeneous 5D space-time topological mappings is extended to cover DNAs of viruses and how the body’s immune system can be enhanced to recognize and remove it.
文摘We generalized an constructing method of noncoherent unitary space time codes (N-USTC) over Rayleigh flat fading channels. A family of N-USTCs with T symbol peroids, M transmit and N receive antennas was constructed by the exponential mapping method based on the tangent subspace of the Grassmann manifold. This exponential mapping method can transform the coherent space time codes (C-STC) into the N-USTC on the Grassmann manifold. We infered an universal framework of constructing a C-STC that is designed by using the algebraic number theory and has full rate and full diversity (FRFD) for t symbol periods and same antennas, where M, N, T, t are general positive integer. We discussed the constraint condition that the exponential mapping has only one solution, from which we presented a approach of searching the optimum adjustive factor αopt that can generate an optimum noncoherent codeword. For different code parameters M, N, T, t and the optimum adjustive factor αopt, we gave the simulation results of the several N-USTCs.
文摘A force with an acceleration that is equal to multiples greater than the speed of light per unit time is exerted on a cloud of charged particles. The particles are resultantly accelerated to within an infinitesimal fraction of the speed of light. As the force or acceleration increases, the particles’ velocity asymptotically approaches but never achieves the speed of light obeying relativity. The asymptotic increase in the particles’ velocity toward the speed of light as acceleration increasingly surpasses the speed of light per unit time does not compensate for the momentum value produced on the particles at sub-light velocities. Hence, the particles’ inertial mass value must increase as acceleration increases. This increase in the particles’ inertial mass as the particles are accelerated produce a gravitational field which is believed to occur in the oscillation of quarks achieving velocities close to the speed of light. The increased inertial mass of the density of accelerated charged particles becomes the source mass (or Big “M”) in Newton’s equation for gravitational force. This implies that a space-time curve is generated by the accelerated particles. Thus, it is shown that the acceleration number (or multiple of the speed of light greater than 1 per unit of time) and the number of charged particles in the cloud density are surjectively mapped to points on a differential manifold or space-time curved surface. Two aspects of Einstein’s field equations are used to describe the correspondence between the gravitational field produced by the accelerated particles and the resultant space-time curve. The two aspects are the Schwarzchild metric and the stress energy tensor. Lastly, the possibility of producing a sufficient acceleration or electromagnetic force on the charged particles to produce a gravitational field is shown through the Lorentz force equation. Moreover, it is shown that a sufficient voltage can be generated to produce an acceleration/force on the particles that is multiples greater than the speed of light per unit time thereby generating gravity.
基金National Natural Science Foundation of China,No.41671121
文摘With rapid development of air transportation,the airspace structure of the future will need to be flexible and dynamic to accommodate the increase in traffic demand.The corridors-in-the-sky has become a new technology to support the full exploitation and utilization of airspace resources.This paper proposes a method of designing corridor,identifying congestion state,and analyzing the influence of air routes’traffic flow.From this,we have reached a number of conclusions.(1)The congestion periods present the multi-peak"wavy"scattered distributions and the peaks back-end agglomeration characteristics in the whole day.(2)The congestion segments present the structural characteristics of unbalanced coverage and concentrated distribution to the crossing points.The corridors with high congestion level present as an italic"N-shaped"frame,which presents incomplete penetration of short segments.(3)For the temporal and spatial interaction,there are two types of congestion segments,and there are some common congestion periods in different congestion segments of multiple corridors.The high-density air route plays a relatively decisive role in corridor congestion,and the influence of two directions is unbalanced.This research can provide a basis for the dynamic evaluation of China’s airspace resources and corridors construction in the future.
基金supported by the Key Laboratory of Advanced Display and System Applications(Shanghai University),Ministry of Education,China(Grant No.P200803)the Science and Technology Commission of Shanghai Municipality(Grant No.09ZR1412000)
文摘Aiming at the time redundancy in the fiat panel display (FPD) imaging process, the paper studied some problems for FPD gray scale controlling based on the fraetal theory, dissertates the construction of the space-time mapping topology architecture, the proposition of optimal scanning structure for FPD's gray imaging, and the creation of the fractal theoretic model. Then the logic implementation and system application are presented based on the fraetal model of the optimal scan architecture, and the application results achieved target of eliminating time redundancy and increasing the scanning availability. The novel control mode that the fractal scanning IP core described with Verilog language embedded in the FPGA hardware frame can efficiently increase the imaging gray scales and quality in the FPDs scanning controller and speed up the frame frequency of display system.
文摘The purpose of this work is to associate the channel encoder called ‘trellis-coded modulation with Ungerboeck-Gray mapping’ (TCM-UGM) to ‘space–time block code’ (STBC), in order to study its performance to correct the transmission errors of a JPEG image. The performance of the proposed scheme is evaluated in senses of bit error rate (BER), frame error rate (FER) and peak signal-to-noise ratio (PSNR) of the reconstructed image. Compared to the association TCM/STBC for a throughput of 2 bits/s/Hz, TCM-UGM/STBC permits to obtain a PSNR gain up to 2 dB.
基金This work was supported in part by the National Basic Research Program of China(Grant No.2007CB310603)the Research Fund of National Mobile Communications Research Laboratory,Southeast University(No.2008A05)+1 种基金the National High Technology Research and Development Program of China(Grant No.2007AA01Z2B1)the National Natural Science Foundation of China(Grant No.60802005).
文摘A family of space-time block codes(STBCs)for systems with even transmit antennas and any number of receive antennas is proposed.The new codeword matrix is constructed by concatenating Alamouti space-time codes to form a block diagonal matrix,and its dimension is equal to the number of transmit antennas.All Alamouti codes in the same codeword matrix have the same information;thus,full transmit diversity can be achieved over fading channels.To improve the spectral efficiency,multi-level modulations such as multi-quadrature amplitude modulation(M-QAM)are employed.The symbol mapping diversity is then exploited between transmissions of the same information from different antennas to improve the bit error rate(BER)performance.The proposed codes outperform the diagonal algebraic space-time(DAST)codes presented by Damen[Damen et al.IEEE Transactions on Information Theory,2002,48(3):628–636]when they have the same spectral efficiency.Also,they outperform the 1/2-rate codes from complex orthogonal design.Moreover,compared to DAST codes,the proposed codes have a low decoding complexity because we only need to perform linear processing to achieve single-symbol maximum-likelihood(ML)decoding.