期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Pedestrian Attribute Recognition in Video Surveillance Scenarios Based on View-attribute Attention Localization 被引量:2
1
作者 Wei-Chen Chen Xin-Yi Yu Lin-Lin Ou 《Machine Intelligence Research》 EI CSCD 2022年第2期153-168,共16页
Pedestrian attribute recognition in surveillance scenarios is still a challenging task due to the inaccurate localization of specific attributes. In this paper, we propose a novel view-attribute localization method ba... Pedestrian attribute recognition in surveillance scenarios is still a challenging task due to the inaccurate localization of specific attributes. In this paper, we propose a novel view-attribute localization method based on attention(VALA), which utilizes view information to guide the recognition process to focus on specific attributes and attention mechanism to localize specific attribute-corresponding areas. Concretely, view information is leveraged by the view prediction branch to generate four view weights that represent the confidences for attributes from different views. View weights are then delivered back to compose specific view-attributes, which will participate and supervise deep feature extraction. In order to explore the spatial location of a view-attribute, regional attention is introduced to aggregate spatial information and encode inter-channel dependencies of the view feature. Subsequently, a fine attentive attribute-specific region is localized, and regional weights for the view-attribute from different spatial locations are gained by the regional attention. The final view-attribute recognition outcome is obtained by combining the view weights with the regional weights. Experiments on three wide datasets(richly annotated pedestrian(RAP), annotated pedestrian v2(RAPv2), and PA-100 K) demonstrate the effectiveness of our approach compared with state-of-the-art methods. 展开更多
关键词 pedestrian attribute recognition surveillance scenarios view-attribute attention mechanism LOCALIZATION
原文传递
Saliency guided self-attention network for pedestrian attribute recognition in surveillance scenarios
2
作者 Li Na Wu Yangyang +2 位作者 Liu Ying Li Daxiang Gao Jiale 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2022年第5期21-29,共9页
Pedestrian attribute recognition is often considered as a multi-label image classification task. In order to make full use of attribute-related location information, a saliency guided self-attention network(SGSA-Net) ... Pedestrian attribute recognition is often considered as a multi-label image classification task. In order to make full use of attribute-related location information, a saliency guided self-attention network(SGSA-Net) was proposed to weakly supervise attribute localization, without annotations of attribute-related regions. Saliency priors were integrated into the spatial attention module(SAM). Meanwhile, channel-wise attention and spatial attention were introduced into the network. Moreover, a weighted binary cross-entropy loss(WCEL) function was employed to handle the imbalance of training data. Extensive experiments on richly annotated pedestrian(RAP) and pedestrian attribute(PETA) datasets demonstrated that SGSA-Net outperformed other state-of-the-art methods. 展开更多
关键词 pedestrian attribute recognition saliency detection self-attention mechanism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部