Dead Reckoning is a relative positioning scheme that is used to infer the change of position relative to a point of origin by measuring the traveled distance and orientation change.Pedestrian Dead Reckoning(PDR)applie...Dead Reckoning is a relative positioning scheme that is used to infer the change of position relative to a point of origin by measuring the traveled distance and orientation change.Pedestrian Dead Reckoning(PDR)applies this concept to walking persons.The method can be used to track someone's movement in a building after a known landmark like the building's entrance is registered.Here,the movement of a foot and the corresponding direction change is measured and summed up,to infer the current position.Measuring and integrating the corresponding physical parameters,e.g.using inertial sensors,introduces small errors that accumulate quickly into large distance errors.Knowledge of a buildings geography may reduce these errors as it can be used to keep the estimated position from moving through walls and onto likely paths.In this paper,we use building maps to improve localization based on a single foot-mounted inertial sensor.We describe our localization method using zero velocity updates to accurately compute the length of individual steps and a Madgwick filter to determine the step orientation.Even though the computation of individual steps is quite accurate,small errors still accumulate in the long term.We show how correction algorithms using likely and unlikely paths can rectify errors intrinsic to pedestrian dead reckoning tasks,such as orientation and displacement drift,and discuss restrictions and disadvantages of these algorithms.We also present a method of deriving the initial position and orientation from GPS measurements.We verify our PDR correction methods analyzing the corrected and raw trajectories of six participants walking four routes of varying length and complexity through an office building,walking each route three times.Our quantitative results show an endpoint accuracy improvement of up to 60%when using likely paths and 23%when using unlikely paths.However,both approaches can also decrease accuracy in certain scenarios.We identify those scenarios and offer further ideas for improving Pedestrian Dead Reckoning methods.展开更多
In recent years,a number of wireless indoor positioning(WIP),such as Bluetooth,Wi-Fi,and Ultra-Wideband(UWB)technologies,are emerging.However,the indoor environment is complex and changeable.Walls,pillars,and even ped...In recent years,a number of wireless indoor positioning(WIP),such as Bluetooth,Wi-Fi,and Ultra-Wideband(UWB)technologies,are emerging.However,the indoor environment is complex and changeable.Walls,pillars,and even pedestrians may block wireless signals and produce non-line-of-sight(NLOS)deviations,resulting in decreased positioning accuracy and the inability to provide people with real-time continuous indoor positioning.This work proposed a strong tracking particle filter based on the chi-square test(SPFC)for indoor positioning.SPFC can fuse indoor wireless signals and the information of the inertial sensing unit(IMU)in the smartphone and detect the NLOS deviation through the chi-square test to avoid the influence of the NLOS deviation on the final positioning result.Simulation experiment results show that the proposed SPFC can reduce the positioning error by 15.1%and 12.3% compared with existing fusion positioning systems in the LOS and NLOS environment.展开更多
In this paper,an effective target locating approach based on the fingerprint fusion posi-tioning(FFP)method is proposed which integrates the time-difference of arrival(TDOA)and the received signal strength according t...In this paper,an effective target locating approach based on the fingerprint fusion posi-tioning(FFP)method is proposed which integrates the time-difference of arrival(TDOA)and the received signal strength according to the statistical variance of target position in the stationary 3D scenarios.The FFP method fuses the pedestrian dead reckoning(PDR)estimation to solve the moving target localization problem.We also introduce auxiliary parameters to estimate the target motion state.Subsequently,we can locate the static pedestrians and track the the moving target.For the case study,eight access stationary points are placed on a bookshelf and hypermarket;one target node is moving inside hypermarkets in 2D and 3D scenarios or stationary on the bookshelf.We compare the performance of our proposed method with existing localization algorithms such as k-nearest neighbor,weighted k-nearest neighbor,pure TDOA and fingerprinting combining Bayesian frameworks including the extended Kalman filter,unscented Kalman filter and particle fil-ter(PF).The proposed approach outperforms obviously the counterpart methodologies in terms of the root mean square error and the cumulative distribution function of localization errors,espe-cially in the 3D scenarios.Simulation results corroborate the effectiveness of our proposed approach.展开更多
受室内复杂环境的影响,实现满足各类室内定位需求、准确实时的定位仍有很大的挑战性。提出了一种联合WiFi信息和行人航位推算(pedestrian dead reckoning,PDR)算法的智能手机室内定位方法,并给出了其原理和流程。实验结果表明,该方法适...受室内复杂环境的影响,实现满足各类室内定位需求、准确实时的定位仍有很大的挑战性。提出了一种联合WiFi信息和行人航位推算(pedestrian dead reckoning,PDR)算法的智能手机室内定位方法,并给出了其原理和流程。实验结果表明,该方法适应性较强、定位结果准确。展开更多
The indoor positioning system is now an important technique as part of the Internet-of-Things(IoT)ecosystem.Among indoor positioning techniques,multiple Wi-Fi Access Points(APs)-based positioning systems have been res...The indoor positioning system is now an important technique as part of the Internet-of-Things(IoT)ecosystem.Among indoor positioning techniques,multiple Wi-Fi Access Points(APs)-based positioning systems have been researched a lot.There is a lack of research focusing on the scene where only one Wi-Fi AP is available.This work proposes a hybrid indoor positioning system that takes advantage of the Fine-Timing Measurements(FTM)technique that is part of the IEEE 802.11mc standard,introduced back in 2016.The system uses one single Wi-Fi FTM AP and takes advantage of the built-in inertial sensors of the smartphone to estimate the device’s position.We explore both Loosely Coupled(LC)and Tightly Coupled(TC)integration schemes for the sensors’data fusion.Experimental results show that the proposed methods can achieve an average positioning accuracy of about 1 m without knowing the initial position.Compared with the LC integration method,the median error accuracy of the proposed TC fusion algorithm has improved by more than 52%and 67%,respectively,in the two experiments we set up.展开更多
Increasing attention has been paid to high-precision indoor localization in dense urban and indoor environments.Previous studies have shown single indoor localization methods based on WiFi fingerprints,surveillance ca...Increasing attention has been paid to high-precision indoor localization in dense urban and indoor environments.Previous studies have shown single indoor localization methods based on WiFi fingerprints,surveillance cameras or Pedestrian Dead Reckoning(PDR)are restricted by low accuracy,limited tracking region,and accumulative error,etc.,and some defects can be resolved with more labor costs or special scenes.However,requesting more additional information and extra user constraints is costly and rarely applicable.In this paper,a two-stage indoor localization system is presented,integrating WiFi fingerprints,the vision of surveillance cameras,and PDR(the system abbreviated as iWVP).A coarse location using WiFi fingerprints is done advanced,and then an accurate location by fusing data from surveillance cameras and the IMU sensors is obtained.iWVP uses a matching algorithm based on motion sequences to confirm the identity of pedestrians,enhancing output accuracy and avoiding corresponding drawbacks of each subsystem.The experimental results show that the iWVP achieves high accuracy with an average position error of 4.61 cm,which can effectively track pedestrians in multiple regions in complex and dynamic indoor environments.展开更多
文摘Dead Reckoning is a relative positioning scheme that is used to infer the change of position relative to a point of origin by measuring the traveled distance and orientation change.Pedestrian Dead Reckoning(PDR)applies this concept to walking persons.The method can be used to track someone's movement in a building after a known landmark like the building's entrance is registered.Here,the movement of a foot and the corresponding direction change is measured and summed up,to infer the current position.Measuring and integrating the corresponding physical parameters,e.g.using inertial sensors,introduces small errors that accumulate quickly into large distance errors.Knowledge of a buildings geography may reduce these errors as it can be used to keep the estimated position from moving through walls and onto likely paths.In this paper,we use building maps to improve localization based on a single foot-mounted inertial sensor.We describe our localization method using zero velocity updates to accurately compute the length of individual steps and a Madgwick filter to determine the step orientation.Even though the computation of individual steps is quite accurate,small errors still accumulate in the long term.We show how correction algorithms using likely and unlikely paths can rectify errors intrinsic to pedestrian dead reckoning tasks,such as orientation and displacement drift,and discuss restrictions and disadvantages of these algorithms.We also present a method of deriving the initial position and orientation from GPS measurements.We verify our PDR correction methods analyzing the corrected and raw trajectories of six participants walking four routes of varying length and complexity through an office building,walking each route three times.Our quantitative results show an endpoint accuracy improvement of up to 60%when using likely paths and 23%when using unlikely paths.However,both approaches can also decrease accuracy in certain scenarios.We identify those scenarios and offer further ideas for improving Pedestrian Dead Reckoning methods.
基金funded by the project“Design of System Integration Construction Scheme Based on Functions of Each Module” (No.XDHT2020169A)the project“Development of Indoor Inspection Robot System for Substation” (No.XDHT2019501A).
文摘In recent years,a number of wireless indoor positioning(WIP),such as Bluetooth,Wi-Fi,and Ultra-Wideband(UWB)technologies,are emerging.However,the indoor environment is complex and changeable.Walls,pillars,and even pedestrians may block wireless signals and produce non-line-of-sight(NLOS)deviations,resulting in decreased positioning accuracy and the inability to provide people with real-time continuous indoor positioning.This work proposed a strong tracking particle filter based on the chi-square test(SPFC)for indoor positioning.SPFC can fuse indoor wireless signals and the information of the inertial sensing unit(IMU)in the smartphone and detect the NLOS deviation through the chi-square test to avoid the influence of the NLOS deviation on the final positioning result.Simulation experiment results show that the proposed SPFC can reduce the positioning error by 15.1%and 12.3% compared with existing fusion positioning systems in the LOS and NLOS environment.
基金partially supported by the National Natural Science Foun-dation of China(No.62071389).
文摘In this paper,an effective target locating approach based on the fingerprint fusion posi-tioning(FFP)method is proposed which integrates the time-difference of arrival(TDOA)and the received signal strength according to the statistical variance of target position in the stationary 3D scenarios.The FFP method fuses the pedestrian dead reckoning(PDR)estimation to solve the moving target localization problem.We also introduce auxiliary parameters to estimate the target motion state.Subsequently,we can locate the static pedestrians and track the the moving target.For the case study,eight access stationary points are placed on a bookshelf and hypermarket;one target node is moving inside hypermarkets in 2D and 3D scenarios or stationary on the bookshelf.We compare the performance of our proposed method with existing localization algorithms such as k-nearest neighbor,weighted k-nearest neighbor,pure TDOA and fingerprinting combining Bayesian frameworks including the extended Kalman filter,unscented Kalman filter and particle fil-ter(PF).The proposed approach outperforms obviously the counterpart methodologies in terms of the root mean square error and the cumulative distribution function of localization errors,espe-cially in the 3D scenarios.Simulation results corroborate the effectiveness of our proposed approach.
基金supported by the National Key Research and Development Program of China[grant numbers 2016YFB0502200,2016YFB0502201]the NSFC[grant number 91638203]。
文摘The indoor positioning system is now an important technique as part of the Internet-of-Things(IoT)ecosystem.Among indoor positioning techniques,multiple Wi-Fi Access Points(APs)-based positioning systems have been researched a lot.There is a lack of research focusing on the scene where only one Wi-Fi AP is available.This work proposes a hybrid indoor positioning system that takes advantage of the Fine-Timing Measurements(FTM)technique that is part of the IEEE 802.11mc standard,introduced back in 2016.The system uses one single Wi-Fi FTM AP and takes advantage of the built-in inertial sensors of the smartphone to estimate the device’s position.We explore both Loosely Coupled(LC)and Tightly Coupled(TC)integration schemes for the sensors’data fusion.Experimental results show that the proposed methods can achieve an average positioning accuracy of about 1 m without knowing the initial position.Compared with the LC integration method,the median error accuracy of the proposed TC fusion algorithm has improved by more than 52%and 67%,respectively,in the two experiments we set up.
基金This work was supported by the National Key Research and Development Program(No.2018YFB2100301)the National Natural Science Foundation of China(No.61972131).
文摘Increasing attention has been paid to high-precision indoor localization in dense urban and indoor environments.Previous studies have shown single indoor localization methods based on WiFi fingerprints,surveillance cameras or Pedestrian Dead Reckoning(PDR)are restricted by low accuracy,limited tracking region,and accumulative error,etc.,and some defects can be resolved with more labor costs or special scenes.However,requesting more additional information and extra user constraints is costly and rarely applicable.In this paper,a two-stage indoor localization system is presented,integrating WiFi fingerprints,the vision of surveillance cameras,and PDR(the system abbreviated as iWVP).A coarse location using WiFi fingerprints is done advanced,and then an accurate location by fusing data from surveillance cameras and the IMU sensors is obtained.iWVP uses a matching algorithm based on motion sequences to confirm the identity of pedestrians,enhancing output accuracy and avoiding corresponding drawbacks of each subsystem.The experimental results show that the iWVP achieves high accuracy with an average position error of 4.61 cm,which can effectively track pedestrians in multiple regions in complex and dynamic indoor environments.