Navigation systems play an important role in many vital disciplines. Determining the location of a user relative to its physical environment is an important part of many indoor-based navigation services such as user n...Navigation systems play an important role in many vital disciplines. Determining the location of a user relative to its physical environment is an important part of many indoor-based navigation services such as user navigation, enhanced 911 (E911), law enforcement, location-based and marketing services. Indoor navigation applications require a reliable, trustful and continuous navigation solution that overcomes the challenge of Global Navigation Satellite System (GNSS) signal unavailability. To compensate for this issue, other navigation systems such as Inertial Navigation System (INS) are introduced, however, over time there is a significant amount of drift especially in common with low-cost commercial sensors. In this paper, a map aided navigation solution is developed. This research develops an aiding system that utilizes geospatial data to assist the navigation solution by providing virtual boundaries for the navigation trajectories and limits its possibilities only when it is logical to locate the user on a map. The algorithm develops a Pedestrian Dead Reckoning (PDR) based on smart-phone accelerometer and magnetometer sensors to provide the navigation solution. Geospatial model for two indoor environments with a developed map matching algorithm was used to match and project navigation position estimates on the geospatial map. The developed algorithms were field tested in indoor environments and yielded accurate matching results as well as a significant enhancement to positional accuracy. The achieved results demonstrate that the contribution of the developed map aided system enhances the reliability, usability, and accuracy of navigation trajectories in indoor environments.展开更多
针对行人航位推算(Pedestrian Dead Reckoning,PDR)室内定位系统的累计误差问题,提出了一种多维信息感知地标匹配的PDR定位算法(PDR positioning algorithm based Multi-imensional Information Perception Landmark Matching,MIPLM)。...针对行人航位推算(Pedestrian Dead Reckoning,PDR)室内定位系统的累计误差问题,提出了一种多维信息感知地标匹配的PDR定位算法(PDR positioning algorithm based Multi-imensional Information Perception Landmark Matching,MIPLM)。算法利用行人在室内走廊环境下的众包轨迹,并基于突出性路口结构,从位置、航向、影响范围以及WiFi特征指纹等方面构建多维信息感知地标库。给出的自适应地标检测算法,结合航向约束轨迹相似度匹配模型,更新行人位置和航向,避免了本地化匹配过程对空间位置的强依赖性。实验结果表明,相比于其他地标构建及匹配算法,所提算法更好地反映了行人活动与室内空间结构的相关性,且在未知起始位置时,算法能够快速收敛并提供较高的定位精度,对于室内行人连续定位具有较高的应用价值。展开更多
针对室内复杂环境下信道状态信息的动态性问题,本文提出了一种面向室内Wi-Fi/行人航迹推算(Pedestrian Dead Reckoning,PDR)融合定位的自适应鲁棒卡尔曼滤波方法.该方法利用自适应鲁棒卡尔曼滤波将Wi-Fi传播模型与PDR定位信息进行多重融...针对室内复杂环境下信道状态信息的动态性问题,本文提出了一种面向室内Wi-Fi/行人航迹推算(Pedestrian Dead Reckoning,PDR)融合定位的自适应鲁棒卡尔曼滤波方法.该方法利用自适应鲁棒卡尔曼滤波将Wi-Fi传播模型与PDR定位信息进行多重融合,推算用户的最优估计位置.同时,基于滤波反馈机制,通过融合定位结果对加权最小二乘法中的路径损耗指数和滤波模型中的观测协方差进行动态修正,保证Wi-Fi传播模型接近于真实室内环境.实验结果表明,该方法能够有效解决室内复杂环境下单一Wi-Fi定位精度低和PDR累积误差的问题,此外,路径损耗指数和观测协方差的实时修正可以提高融合定位系统的定位精度和稳定性.展开更多
对当前室内行人定位算法进行了研究。针对WiFi定位稳定性差的问题,提出了一种改进的K最近邻(Improved K-Nearest Neighbor,IKNN)算法。针对行人航位推算(Pedestrian Dead Reckoning,PDR)算法中步长模型及航向估计不准确的问题,提出了一...对当前室内行人定位算法进行了研究。针对WiFi定位稳定性差的问题,提出了一种改进的K最近邻(Improved K-Nearest Neighbor,IKNN)算法。针对行人航位推算(Pedestrian Dead Reckoning,PDR)算法中步长模型及航向估计不准确的问题,提出了一种实时更新的步长模型及基于室内环境特征的航向估计算法。在改进的WiFi定位算法与PDR算法的基础上,提出了一种基于自适应粒子滤波的室内行人WiFi与PDR组合定位算法,通过自适应因子自动调节观测量对粒子分布的影响。通过智能手机在实际室内环境中对定位方法进行了测试,实验结果表明:组合定位系统定位精度为0.66 m,高于普通的粒子滤波算法,是一种准确高效的室内行人定位算法。展开更多
为提高室内定位系统精度和跟踪性能以及适应复杂环境,将行人航迹推算(Pedestrian Dead Reckoning,PDR)与双目视觉组合,提出一种双目视觉辅助PDR的组合导航定位方法.该方法通过选取或布置地标建立了地标位置数据表;基于轻量化目标检测实...为提高室内定位系统精度和跟踪性能以及适应复杂环境,将行人航迹推算(Pedestrian Dead Reckoning,PDR)与双目视觉组合,提出一种双目视觉辅助PDR的组合导航定位方法.该方法通过选取或布置地标建立了地标位置数据表;基于轻量化目标检测实现了对地标实时双目测距,保证定位的实时性;利用PDR位置信息得到检出地标类别对应坐标,基于因子图的协同定位和误差估计算法将双目视觉与PDR有效融合,提高了定位精度并抑制PDR累计误差,同时对PDR中航向和单参数模型中单位转换常数进行误差补偿,提高PDR定位精度.实验结果表明,在地标纹理清晰且分布合理情况下,该方法能有效解决室内复杂环境下单一PDR累积误差问题,此外,对航向和单位转换常数实时补偿可提高组合定位系统的定位精度和稳定性.展开更多
运用位置指纹与行人航位推算(pedestrian dead reckoning,PDR)融合的方法研究室内定位算法,以提高室内定位精度。对于位置指纹算法,通过优化指纹数据库完成离线数据训练,通过限定区域加权K实现最优邻近法的在线实时匹配。对于行人航位...运用位置指纹与行人航位推算(pedestrian dead reckoning,PDR)融合的方法研究室内定位算法,以提高室内定位精度。对于位置指纹算法,通过优化指纹数据库完成离线数据训练,通过限定区域加权K实现最优邻近法的在线实时匹配。对于行人航位推算法,提出自适应加权波峰检测算法检测步频,改进了步长估算的非线性模型,融合陀螺仪和磁力计信息进行航向估计。最终运用无迹卡尔曼滤波器对位置指纹和PDR进行融合,提高了定位精度,并在定位系统中进行了验证和应用。展开更多
文摘Navigation systems play an important role in many vital disciplines. Determining the location of a user relative to its physical environment is an important part of many indoor-based navigation services such as user navigation, enhanced 911 (E911), law enforcement, location-based and marketing services. Indoor navigation applications require a reliable, trustful and continuous navigation solution that overcomes the challenge of Global Navigation Satellite System (GNSS) signal unavailability. To compensate for this issue, other navigation systems such as Inertial Navigation System (INS) are introduced, however, over time there is a significant amount of drift especially in common with low-cost commercial sensors. In this paper, a map aided navigation solution is developed. This research develops an aiding system that utilizes geospatial data to assist the navigation solution by providing virtual boundaries for the navigation trajectories and limits its possibilities only when it is logical to locate the user on a map. The algorithm develops a Pedestrian Dead Reckoning (PDR) based on smart-phone accelerometer and magnetometer sensors to provide the navigation solution. Geospatial model for two indoor environments with a developed map matching algorithm was used to match and project navigation position estimates on the geospatial map. The developed algorithms were field tested in indoor environments and yielded accurate matching results as well as a significant enhancement to positional accuracy. The achieved results demonstrate that the contribution of the developed map aided system enhances the reliability, usability, and accuracy of navigation trajectories in indoor environments.
文摘针对行人航位推算(Pedestrian Dead Reckoning,PDR)室内定位系统的累计误差问题,提出了一种多维信息感知地标匹配的PDR定位算法(PDR positioning algorithm based Multi-imensional Information Perception Landmark Matching,MIPLM)。算法利用行人在室内走廊环境下的众包轨迹,并基于突出性路口结构,从位置、航向、影响范围以及WiFi特征指纹等方面构建多维信息感知地标库。给出的自适应地标检测算法,结合航向约束轨迹相似度匹配模型,更新行人位置和航向,避免了本地化匹配过程对空间位置的强依赖性。实验结果表明,相比于其他地标构建及匹配算法,所提算法更好地反映了行人活动与室内空间结构的相关性,且在未知起始位置时,算法能够快速收敛并提供较高的定位精度,对于室内行人连续定位具有较高的应用价值。
文摘针对室内复杂环境下信道状态信息的动态性问题,本文提出了一种面向室内Wi-Fi/行人航迹推算(Pedestrian Dead Reckoning,PDR)融合定位的自适应鲁棒卡尔曼滤波方法.该方法利用自适应鲁棒卡尔曼滤波将Wi-Fi传播模型与PDR定位信息进行多重融合,推算用户的最优估计位置.同时,基于滤波反馈机制,通过融合定位结果对加权最小二乘法中的路径损耗指数和滤波模型中的观测协方差进行动态修正,保证Wi-Fi传播模型接近于真实室内环境.实验结果表明,该方法能够有效解决室内复杂环境下单一Wi-Fi定位精度低和PDR累积误差的问题,此外,路径损耗指数和观测协方差的实时修正可以提高融合定位系统的定位精度和稳定性.
文摘为提高室内定位系统精度和跟踪性能以及适应复杂环境,将行人航迹推算(Pedestrian Dead Reckoning,PDR)与双目视觉组合,提出一种双目视觉辅助PDR的组合导航定位方法.该方法通过选取或布置地标建立了地标位置数据表;基于轻量化目标检测实现了对地标实时双目测距,保证定位的实时性;利用PDR位置信息得到检出地标类别对应坐标,基于因子图的协同定位和误差估计算法将双目视觉与PDR有效融合,提高了定位精度并抑制PDR累计误差,同时对PDR中航向和单参数模型中单位转换常数进行误差补偿,提高PDR定位精度.实验结果表明,在地标纹理清晰且分布合理情况下,该方法能有效解决室内复杂环境下单一PDR累积误差问题,此外,对航向和单位转换常数实时补偿可提高组合定位系统的定位精度和稳定性.
文摘运用位置指纹与行人航位推算(pedestrian dead reckoning,PDR)融合的方法研究室内定位算法,以提高室内定位精度。对于位置指纹算法,通过优化指纹数据库完成离线数据训练,通过限定区域加权K实现最优邻近法的在线实时匹配。对于行人航位推算法,提出自适应加权波峰检测算法检测步频,改进了步长估算的非线性模型,融合陀螺仪和磁力计信息进行航向估计。最终运用无迹卡尔曼滤波器对位置指纹和PDR进行融合,提高了定位精度,并在定位系统中进行了验证和应用。