IIn order to improve the performance of wireless distributed peer-to-peer(P2P)files sharing systems,a general system architecture and a novel peer selecting model based on fuzzy cognitive maps(FCM)are proposed in this...IIn order to improve the performance of wireless distributed peer-to-peer(P2P)files sharing systems,a general system architecture and a novel peer selecting model based on fuzzy cognitive maps(FCM)are proposed in this paper.The new model provides an effective approach on choosing an optimal peer from several resource discovering results for the best file transfer.Compared with the traditional min-hops scheme that uses hops as the only selecting criterion,the proposed model uses FCM to investigate the complex relationships among various relative factors in wireless environments and gives an overall evaluation score on the candidate.It also has strong scalability for being independent of specified P2P resource discovering protocols.Furthermore,a complete implementation is explained in concrete modules.The simulation results show that the proposed model is effective and feasible compared with min-hops scheme,with the success transfer rate increased by at least 20% and transfer time improved as high as 34%.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.60672124 and 60832009)Hi-Tech Research and Development Program(National 863 Program)(Grant No.2007AA01Z221)
文摘IIn order to improve the performance of wireless distributed peer-to-peer(P2P)files sharing systems,a general system architecture and a novel peer selecting model based on fuzzy cognitive maps(FCM)are proposed in this paper.The new model provides an effective approach on choosing an optimal peer from several resource discovering results for the best file transfer.Compared with the traditional min-hops scheme that uses hops as the only selecting criterion,the proposed model uses FCM to investigate the complex relationships among various relative factors in wireless environments and gives an overall evaluation score on the candidate.It also has strong scalability for being independent of specified P2P resource discovering protocols.Furthermore,a complete implementation is explained in concrete modules.The simulation results show that the proposed model is effective and feasible compared with min-hops scheme,with the success transfer rate increased by at least 20% and transfer time improved as high as 34%.