Multichannel synthetic aperture radar (SAR) in azimuth can resolve the contradiction between high resolution and wide swath faced with traditional SAR imaging. However, channel errors will degrade the performance of i...Multichannel synthetic aperture radar (SAR) in azimuth can resolve the contradiction between high resolution and wide swath faced with traditional SAR imaging. However, channel errors will degrade the performance of imaging. This paper compares the performances of four channel error estimation algorithms under different clutter distributions and SNR conditions. Further, explanations are given for performance differences of the four algorithms, which provide evidence for method selection in engineering applications.展开更多
In this paper, we explore the technology of tracking a group of targets with correlated motions in a wireless sensor network. Since a group of targets moves collectively and is restricted within a limited region, it i...In this paper, we explore the technology of tracking a group of targets with correlated motions in a wireless sensor network. Since a group of targets moves collectively and is restricted within a limited region, it is not worth consuming scarce resources of sensors in computing the trajectory of each single target. Hence, in this paper, the problem is modeled as tracking a geographical continuous region covered by all targets. A tracking algorithm is proposed to estimate the region covered by the target group in each sampling period. Based on the locations of sensors and the azimuthal angle of arrival (AOA) information, the estimated region covering all the group members is obtained. Algorithm analysis provides the fundamental limits to the accuracy of localizing a target group. Simulation results show that the proposed algorithm is superior to the existing hull algorithm due to the reduction in estimation error, which is between 10% and 40% of the hull algorithm, with a similar density of sensors. And when the density of sensors increases, the localization accuracy of the proposed algorithm improves dramatically.展开更多
将无味卡尔曼滤波(U nscen ted K a lm an filter,UKF)应用于雷达配准,提出一种新的多雷达方位配准算法。在该算法中,目标的运动状态和方位误差由选定的采样点来近似,在每个更新过程中,采样点随着状态方程传播并随非线性测量方程变换,...将无味卡尔曼滤波(U nscen ted K a lm an filter,UKF)应用于雷达配准,提出一种新的多雷达方位配准算法。在该算法中,目标的运动状态和方位误差由选定的采样点来近似,在每个更新过程中,采样点随着状态方程传播并随非线性测量方程变换,得到目标的运动状态和方位误差的均值,避免了对非线性方程的线性化,且具有较高的计算精度。与传统的扩展卡尔曼滤波(Ex tended K a lm an filter,EKF)方法进行了仿真比较,结果表明UKF方法能有效地克服非线性跟踪问题中很容易出现的滤波发散问题,且估计精度高于UKF方法。展开更多
文摘Multichannel synthetic aperture radar (SAR) in azimuth can resolve the contradiction between high resolution and wide swath faced with traditional SAR imaging. However, channel errors will degrade the performance of imaging. This paper compares the performances of four channel error estimation algorithms under different clutter distributions and SNR conditions. Further, explanations are given for performance differences of the four algorithms, which provide evidence for method selection in engineering applications.
基金Project supported by the State Key Program of the National Natural Science Foundation of China(Grant No.60835001)the National Natural Science Foundation of China(Grant No.61104068)the Natural Science Foundation of Jiangsu Province China(Grant No.BK2010200)
文摘In this paper, we explore the technology of tracking a group of targets with correlated motions in a wireless sensor network. Since a group of targets moves collectively and is restricted within a limited region, it is not worth consuming scarce resources of sensors in computing the trajectory of each single target. Hence, in this paper, the problem is modeled as tracking a geographical continuous region covered by all targets. A tracking algorithm is proposed to estimate the region covered by the target group in each sampling period. Based on the locations of sensors and the azimuthal angle of arrival (AOA) information, the estimated region covering all the group members is obtained. Algorithm analysis provides the fundamental limits to the accuracy of localizing a target group. Simulation results show that the proposed algorithm is superior to the existing hull algorithm due to the reduction in estimation error, which is between 10% and 40% of the hull algorithm, with a similar density of sensors. And when the density of sensors increases, the localization accuracy of the proposed algorithm improves dramatically.
文摘将无味卡尔曼滤波(U nscen ted K a lm an filter,UKF)应用于雷达配准,提出一种新的多雷达方位配准算法。在该算法中,目标的运动状态和方位误差由选定的采样点来近似,在每个更新过程中,采样点随着状态方程传播并随非线性测量方程变换,得到目标的运动状态和方位误差的均值,避免了对非线性方程的线性化,且具有较高的计算精度。与传统的扩展卡尔曼滤波(Ex tended K a lm an filter,EKF)方法进行了仿真比较,结果表明UKF方法能有效地克服非线性跟踪问题中很容易出现的滤波发散问题,且估计精度高于UKF方法。