Based on the two-dimensional kinetic ablation theory of the hydrogen pellet ablation developed by Kuteev [B.V. Kuteev, Nuclear Fusion, 35 (1995) 431], an algorithm of erosion speed and ablation rate calculations for L...Based on the two-dimensional kinetic ablation theory of the hydrogen pellet ablation developed by Kuteev [B.V. Kuteev, Nuclear Fusion, 35 (1995) 431], an algorithm of erosion speed and ablation rate calculations for Li, Be, and B impurity pellets in reactor-relevant plasma has been derived. Results show compatibilities of lithium pellet injection used in α-particle diagnostics are positive in comparison with other solid impurity pellets (e.g. Be, B and C). Using the 2-D Kuteev lentil model, including kinetic effects, we find that currently existing pellet injection techniques will not meet core-fueling requirements for ITER-FEAT. A pressure as high as 254 MPa must be applied to a pellet accelerator with a 200 cm-long single-stage pneumatic gun, in order to accelerate a pellet with a radius rpo = 0.5 cm to a velocity of vpo, 24 × 105 cm/s penetrating 100 cm into the ITER plasma core. Comparisons of pellet velocity- and radius-dependent penetration depth between the Neutral Gas Shielding and the Kuteev's models are made. However, we find that the isotopic effects can lead to a 33% lower pellet speed for solid DT, compared to an identical H2 pellet penetrating the same length in ITER-FEAT plasma, and our calculations show that HFS injection will much improve core fueling efficiency.展开更多
The pellet injection experiments for fuelling and diagnostics have been carried out on the HL-1M tokamak. The eight-pellet injector was installed on HL-1M. A reliable monitordetector and camera system was set up to ta...The pellet injection experiments for fuelling and diagnostics have been carried out on the HL-1M tokamak. The eight-pellet injector was installed on HL-1M. A reliable monitordetector and camera system was set up to take initial pellet photographs and measure the initial pellet speed and size. High fuelling efficiency of 60 % - 100 % and a density profile with a peaking factor of 1.8 - 2.0 were obtained. The maximum density close to 10^14/cm^3 in HL-1M was achieved with newly optimized combined fuelling techniques. Two typical models of pellet ablation have been utilized for simulative calculation of the ablation rates in HL-1M. In comparison with the distribution of the measured Hα emission intensity from the digital data of the CCD camera, the experimental result seems more optimistic for core fuelling than theoretical predictions by the two models. The safety factor profile q(r) has been extracted from the information provided by the CCD camera during the pellet injection. The reliability of the measured results depends mainly on the calibration of the imaging space position. Based on the calibration, the measured q-profile becomes more reasonable than those published previously for the same shot number and same photograph.展开更多
Thorium based nuclear fuel is of immense interest to India by virtue of the abundance of Thorium and relative shortage of Uranium. Thorium metal tubes were being cold drawn using copper as cladding to prevent die seiz...Thorium based nuclear fuel is of immense interest to India by virtue of the abundance of Thorium and relative shortage of Uranium. Thorium metal tubes were being cold drawn using copper as cladding to prevent die seizure. After cold drawing, the copper was removed by dissolution in nitric acid. Thorium does not dissolve being passivated by nitric acid. Initially the copper cladding was carried out by inserting copper tubes inside and outside the thorium metal tube. In an innovative development, the mechanical cladding with copper was replaced by electroplated copper with a remarkable improvement in thorium tube acceptance rates. Oxalate derived thoria powder was found to require lower compaction pressures compared to ammonium diuranate derived urania powders to attain the same green compact density. However, the green pellets of thoria were fragile and chipped during handling. The strength improved after introducing a ball milling step before compaction and maintaining the green density above the specified value. Alternatively, binders were used later for greater handling strength. Magnesia was conventionally being used as dopant to enhance the sinterability of thoria. The normal sintering temperature for magnesia doped thoria was 1600℃ - 1700℃, which was achieved in electrically heated molybdenum element sintering furnaces with reducing atmosphere. 0.25 mole percent addition of niobia to the thoria was found to bring down the sintering temperature to 1150℃. Sintering could be done in ordinary furnaces in air atmosphere using silicon carbide or Kanthal heating elements. Electrical conductivity was measured for both magnesia and niobia doped sintered thoria and used in interpreting differences in sintering behavior.展开更多
By means of isothermal oxidation and chemical analysis, great importance was attached to the parameters that made effects on the oxidation degree of vanadium, titanium-bearing magnetite pellet in high-temperature proc...By means of isothermal oxidation and chemical analysis, great importance was attached to the parameters that made effects on the oxidation degree of vanadium, titanium-bearing magnetite pellet in high-temperature processing (1 073- 1 323 K). Based on the experimental data, oxidation kinetics of pellet was analyzed according to shrinking unreacted-core model subsequently. Experiment results display that the oxidation degree of pellet increases with increasing of oxidation time, oxidation temperature and oxygen content, as well as shrinking of pellet diameter. Under the condition of oxidation time 20 min, oxidation temperature 1223 K, oxygen content 15%, and pellet diameter 12 mm, oxidation degree of pellet reaches 92.92%. The analysis of oxidation kinetics indicates that oxidation process of pellet is controlled by chemical reaction with activation energy 68.64 kJ/mol at a relatively lower temperature (1073-1 173 K). Oxidation process of pellet is mixed-controlled by chemistry reaction and diffusion with activation energy 39.66 kJ/mol in the temperature range of 1 173-1 273 K. When oxidation temperature is higher than 1 273 K, the limited link of oxidation reaction is the diffusion control with the activation energy 20.85 kJ/mol. These results can serve as a reference to the production of vanadium, titanium-hearing magnetite pellet.展开更多
Induration process of oxidized pellets involves the oxidation of Fe3O4 and re-crystallization of Fe2O3.The oxidation process of Fe3O4 is significant for pellets to obtain better ambient strength.Thus,the effect of MgO...Induration process of oxidized pellets involves the oxidation of Fe3O4 and re-crystallization of Fe2O3.The oxidation process of Fe3O4 is significant for pellets to obtain better ambient strength.Thus,the effect of MgO on oxidation process of Fe3O4 was investigated.The unreacted core model was applied to analyze the oxidizing induration process of pellets.The experimental results show that MgO plays a negative role in the oxidation process of Fe3O4.The oxidation rate of Fe3O4 in MgO-fluxed pellets(95.0% Fe3O4 +5.0% MgO)is slower than that in standard acid pellets(100% Fe3O4).The relation between oxidation ratio of Fe3O4 and time was calculated based on the unreacted core model for both MgO-fluxed pellets and standard acid pellets.According to verification experiments,the values calculated by model coincide well with the experimental values.Therefore,the unreacted core model could be applied to describe the oxidizing induration process of pellets.展开更多
For the recycling of ferrous sludge from steel industry,the carbonation pellet process should be considered as a "green" process,since no impurities are added as well as CO2 can be sequestrated and consumed.Through ...For the recycling of ferrous sludge from steel industry,the carbonation pellet process should be considered as a "green" process,since no impurities are added as well as CO2 can be sequestrated and consumed.Through the thermodynamic calculation,the carbonation reaction can occur spontaneously and is an exothermic reaction.Based on the kinetic analysis through unreacted core model,the interfacial chemical reaction was the rate controlling step in the initial fast stage of carbonation,and the CO2 diffusion through the CaCO3 product layer was the rate controlling step in the following extremely slow stage.For the carbonation bonded mechanism,the pellet strength was gained by the formation and growing of CaCO3 product layer.Since the interfacial chemical reaction was the critical stage of the entire carbonation process,the emphasizes should be focused on the improvement of sorbent activity and the optimization of process parameters,such as pore structure,pore surface area,and total pressure,CO2 partial pressure,reaction temperature,etc to accelerate the reaction rate and to improve the quality of carbonation pellets.展开更多
文摘Based on the two-dimensional kinetic ablation theory of the hydrogen pellet ablation developed by Kuteev [B.V. Kuteev, Nuclear Fusion, 35 (1995) 431], an algorithm of erosion speed and ablation rate calculations for Li, Be, and B impurity pellets in reactor-relevant plasma has been derived. Results show compatibilities of lithium pellet injection used in α-particle diagnostics are positive in comparison with other solid impurity pellets (e.g. Be, B and C). Using the 2-D Kuteev lentil model, including kinetic effects, we find that currently existing pellet injection techniques will not meet core-fueling requirements for ITER-FEAT. A pressure as high as 254 MPa must be applied to a pellet accelerator with a 200 cm-long single-stage pneumatic gun, in order to accelerate a pellet with a radius rpo = 0.5 cm to a velocity of vpo, 24 × 105 cm/s penetrating 100 cm into the ITER plasma core. Comparisons of pellet velocity- and radius-dependent penetration depth between the Neutral Gas Shielding and the Kuteev's models are made. However, we find that the isotopic effects can lead to a 33% lower pellet speed for solid DT, compared to an identical H2 pellet penetrating the same length in ITER-FEAT plasma, and our calculations show that HFS injection will much improve core fueling efficiency.
基金National Natural Science Foundation of China (No. 19889502)
文摘The pellet injection experiments for fuelling and diagnostics have been carried out on the HL-1M tokamak. The eight-pellet injector was installed on HL-1M. A reliable monitordetector and camera system was set up to take initial pellet photographs and measure the initial pellet speed and size. High fuelling efficiency of 60 % - 100 % and a density profile with a peaking factor of 1.8 - 2.0 were obtained. The maximum density close to 10^14/cm^3 in HL-1M was achieved with newly optimized combined fuelling techniques. Two typical models of pellet ablation have been utilized for simulative calculation of the ablation rates in HL-1M. In comparison with the distribution of the measured Hα emission intensity from the digital data of the CCD camera, the experimental result seems more optimistic for core fuelling than theoretical predictions by the two models. The safety factor profile q(r) has been extracted from the information provided by the CCD camera during the pellet injection. The reliability of the measured results depends mainly on the calibration of the imaging space position. Based on the calibration, the measured q-profile becomes more reasonable than those published previously for the same shot number and same photograph.
文摘Thorium based nuclear fuel is of immense interest to India by virtue of the abundance of Thorium and relative shortage of Uranium. Thorium metal tubes were being cold drawn using copper as cladding to prevent die seizure. After cold drawing, the copper was removed by dissolution in nitric acid. Thorium does not dissolve being passivated by nitric acid. Initially the copper cladding was carried out by inserting copper tubes inside and outside the thorium metal tube. In an innovative development, the mechanical cladding with copper was replaced by electroplated copper with a remarkable improvement in thorium tube acceptance rates. Oxalate derived thoria powder was found to require lower compaction pressures compared to ammonium diuranate derived urania powders to attain the same green compact density. However, the green pellets of thoria were fragile and chipped during handling. The strength improved after introducing a ball milling step before compaction and maintaining the green density above the specified value. Alternatively, binders were used later for greater handling strength. Magnesia was conventionally being used as dopant to enhance the sinterability of thoria. The normal sintering temperature for magnesia doped thoria was 1600℃ - 1700℃, which was achieved in electrically heated molybdenum element sintering furnaces with reducing atmosphere. 0.25 mole percent addition of niobia to the thoria was found to bring down the sintering temperature to 1150℃. Sintering could be done in ordinary furnaces in air atmosphere using silicon carbide or Kanthal heating elements. Electrical conductivity was measured for both magnesia and niobia doped sintered thoria and used in interpreting differences in sintering behavior.
基金Item Sponsored by National Science Fund for Distinguished Young Scholars of China(50725416)National Natural Science Foundation of China(50804059)+1 种基金National Key Programof Science and Technology of China(2008BAB32B06)Graduate Degree Thesis Innovation Foundation of Hunan Province and Central South University of China(1960-71131100053)
文摘By means of isothermal oxidation and chemical analysis, great importance was attached to the parameters that made effects on the oxidation degree of vanadium, titanium-bearing magnetite pellet in high-temperature processing (1 073- 1 323 K). Based on the experimental data, oxidation kinetics of pellet was analyzed according to shrinking unreacted-core model subsequently. Experiment results display that the oxidation degree of pellet increases with increasing of oxidation time, oxidation temperature and oxygen content, as well as shrinking of pellet diameter. Under the condition of oxidation time 20 min, oxidation temperature 1223 K, oxygen content 15%, and pellet diameter 12 mm, oxidation degree of pellet reaches 92.92%. The analysis of oxidation kinetics indicates that oxidation process of pellet is controlled by chemical reaction with activation energy 68.64 kJ/mol at a relatively lower temperature (1073-1 173 K). Oxidation process of pellet is mixed-controlled by chemistry reaction and diffusion with activation energy 39.66 kJ/mol in the temperature range of 1 173-1 273 K. When oxidation temperature is higher than 1 273 K, the limited link of oxidation reaction is the diffusion control with the activation energy 20.85 kJ/mol. These results can serve as a reference to the production of vanadium, titanium-hearing magnetite pellet.
基金Item Sponsored by National Natural Science Foundation of China(51604069,U1508213,51404059)China Postdoctoral Science Foundation(2016M591445)+1 种基金Postdoctoral Science Foundation of NEU China(20160302)Fundamental Research Funds for Central Universities of China(N140204009)
文摘Induration process of oxidized pellets involves the oxidation of Fe3O4 and re-crystallization of Fe2O3.The oxidation process of Fe3O4 is significant for pellets to obtain better ambient strength.Thus,the effect of MgO on oxidation process of Fe3O4 was investigated.The unreacted core model was applied to analyze the oxidizing induration process of pellets.The experimental results show that MgO plays a negative role in the oxidation process of Fe3O4.The oxidation rate of Fe3O4 in MgO-fluxed pellets(95.0% Fe3O4 +5.0% MgO)is slower than that in standard acid pellets(100% Fe3O4).The relation between oxidation ratio of Fe3O4 and time was calculated based on the unreacted core model for both MgO-fluxed pellets and standard acid pellets.According to verification experiments,the values calculated by model coincide well with the experimental values.Therefore,the unreacted core model could be applied to describe the oxidizing induration process of pellets.
基金Item Sponsored by National Natural Science Foundation of China(51074061)Natural Science Foundation-Steel and Iron Foundation of Hebei Province of China(E2011209039)
文摘For the recycling of ferrous sludge from steel industry,the carbonation pellet process should be considered as a "green" process,since no impurities are added as well as CO2 can be sequestrated and consumed.Through the thermodynamic calculation,the carbonation reaction can occur spontaneously and is an exothermic reaction.Based on the kinetic analysis through unreacted core model,the interfacial chemical reaction was the rate controlling step in the initial fast stage of carbonation,and the CO2 diffusion through the CaCO3 product layer was the rate controlling step in the following extremely slow stage.For the carbonation bonded mechanism,the pellet strength was gained by the formation and growing of CaCO3 product layer.Since the interfacial chemical reaction was the critical stage of the entire carbonation process,the emphasizes should be focused on the improvement of sorbent activity and the optimization of process parameters,such as pore structure,pore surface area,and total pressure,CO2 partial pressure,reaction temperature,etc to accelerate the reaction rate and to improve the quality of carbonation pellets.