期刊文献+
共找到339篇文章
< 1 2 17 >
每页显示 20 50 100
Hydrochar Pelletization towards Solid Biofuel from Biowaste Hydrothermal Carbonization
1
作者 Ao Li Kai Jin +5 位作者 Jinrui Qin Zhaowei Huang Yu Liu Rui Chen Tengfei Wang Junmin Chen 《Journal of Renewable Materials》 SCIE EI 2023年第1期411-422,共12页
Hydrothermal carbonization is highly applicable to high moisture biomass upgrading due to the fact that moist-ure involved can be directly used as reaction media under the subcritical-water region.With this,value-adde... Hydrothermal carbonization is highly applicable to high moisture biomass upgrading due to the fact that moist-ure involved can be directly used as reaction media under the subcritical-water region.With this,value-added utilization of hydrochar as solid fuel with high carbon and energy density is one of the important pathways for biomass conversion.In this review,the dewatering properties of hydrochar after the hydrothermal carbonization of biowaste,coalification degree with elemental composition and evolution,pelletization of hydrochar to enhance the mechanical properties and density,coupled with the combustion properties of hydrochar biofuel were discussed with various biomass and carbonization parameters.Potential applications for the co-combustion with coal,cleaner properties and energy balance for biowaste hydrothermal carbonization were presented as well as the challenges. 展开更多
关键词 BIOMASS hydrothermal carbonization hydrochar pelletization
下载PDF
Extrusion–spheronization a promising pelletization technique: In-depth review 被引量:4
2
作者 Sagar Muley Tanaji Nandgude Sushilkumar Poddar 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2016年第6期684-699,共16页
This review article deals with various aspects of the extrusion–spheronization technique.The first part includes different steps in the production process of pellets such as granulation, extrusion, spheronization, an... This review article deals with various aspects of the extrusion–spheronization technique.The first part includes different steps in the production process of pellets such as granulation, extrusion, spheronization, and drying. In the second part, the parameters which can influence the quality of pellets including formulation(moisture content, granulating liquid,excipients, and drugs), equipment(mixer, extruder, friction plate, and extrusion screen) and process(extrusion speed, extrusion temperature, spheronizer load, spheronization time,spheronization speed, and drying method) are discussed. In the final part, methods available for characterization(particle size distribution, surface area, shape and sphericity, porosity,density, hardness and friability, flow properties, disintegration, and dissolution) of the pellets are explained. 展开更多
关键词 PELLET pelletization techniques Extrusion–spheronization Quality parameters Pellet’s characterization
下载PDF
Hydrothermal Carbonization of Deciduous Biomass(Alnus incana)and Pelletization Prospects
3
作者 Raghu Kc Indu Babu +3 位作者 Sara Alatalo Jarno Fohr Tapio Ranta Ismo Tiihonen 《Journal of Sustainable Bioenergy Systems》 2017年第3期138-148,共11页
Thermal treatment of biomass has been attracting attention for a decade or so, especially torrefaction. However, for the past few years, wet pyrolysis, also known as hydrothermal carbonization (HTC), has been getting ... Thermal treatment of biomass has been attracting attention for a decade or so, especially torrefaction. However, for the past few years, wet pyrolysis, also known as hydrothermal carbonization (HTC), has been getting some attention. Hydrothermal carbonization is a thermal treatment of biomass in the presence of water in a temperature range of 180°C - 260°C. This method of treating biomass has some benefits which others do not, such as it can handle extremely wet biomass. However, treating biomass may not be enough for practical use. It may need to be transported and stored. Thus, this study explored the idea of pelletizing the HTC biomass. The mechanical strength of the HTC pellets was found to be 93%, whereas, higher heating value (HHV) (dry basis) was found to be 4% higher than the corresponding white pellets. The initial results with some limited parameters indicated that it would be possible to pelletize without binder. However, extensive research on energy balance and economic assessment would be necessary to achieve economic feasibility. 展开更多
关键词 SUSTAINABLE BIOENERGY Hydrothermal Carbonization Hydrochar pelletization
下载PDF
Ancillary Impacts of Harvest Residue Pelletization
4
作者 Ryan Jacobson Shahab Sokhansanj +3 位作者 Dominik Roeser Jason Hansen Bhushan Gopaluni Xiaotao Bi 《Journal of Sustainable Bioenergy Systems》 2021年第3期144-155,共12页
This paper analyzes the implications on employment, taxation, and wildfire fuel reduction costs when using mobile pellet mills to remove biomass and <span style="font-family:Verdana;">reduce wildfire f... This paper analyzes the implications on employment, taxation, and wildfire fuel reduction costs when using mobile pellet mills to remove biomass and <span style="font-family:Verdana;">reduce wildfire fuels. Wildfire suppression costs in British Columbia hav</span><span style="font-family:Verdana;">e exceeded the set budget in 9 of the last 10 years and the province has only reduced the fuel load on a fraction of the high-risk hectares. Using a novel high-moisture mobile pellet mill allows the production of 89,000 tonnes of wood pellets each year for a price of $293 <img src="Edit_1733c4c4-fb86-4547-b5bd-749e94873516.png" alt="" /></span><sup><span style="font-family:Verdana;"></span></sup><span style="font-family:Verdana;">. Each tonne produced also provides $546 <img src="Edit_af634406-31e8-442c-baf8-b48928050931.png" alt="" /></span><sup><span style="font-family:Verdana;"></span></sup><span style="font-family:Verdana;"> in additional benefits from employment, taxation, and </span><span style="font-family:Verdana;">reductions in the cost to perform fuel treatments. The presented research</span><span style="font-family:Verdana;"> found that 11 employees are needed to operate a mobile pellet mill, with total employment of 242 for 22 systems across BC. The assessed system can also avoid $5.5 million in employment insurance payments. The 22 systems also provide $323,000 in taxable profits and $524,000 from income taxes from employees. Fuel treatment with the researched systems costs $1112 <img src="Edit_135d6ab7-4f3a-41dd-ba91-2d0d66933731.png" alt="" /></span><sup><span style="font-family:Verdana;"></span></sup><span style="font-family:Verdana;">. A </span><span style="font-family:Verdana;">cost</span><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;">benefit analysis shows that the system provides $2.97 in benefits for</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"> every dollar invested.</span></span> 展开更多
关键词 BIOENERGY Harvest Residues Mobile pelletization High Moisture
下载PDF
Grate-kiln pelletization of Indian hematite fines and its industrial practice 被引量:2
5
作者 De-qing Zhu Feng Zhang +2 位作者 Zheng-qi Guo Jian Pan Wei Yu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第5期473-485,共13页
Indian hematite fines normally have a high iron grade and minor impurities; they are usually used as sinter fines for feeding into a blast furnace. In this work, the grindability properties of two kinds of Indian hema... Indian hematite fines normally have a high iron grade and minor impurities; they are usually used as sinter fines for feeding into a blast furnace. In this work, the grindability properties of two kinds of Indian hematite fines and the roasting behaviors and induration characteristics of pellets made from these fines were revealed through experiments involving dry ball milling and small-scale and pilot-scale tests. In addition, the microstructures of the particles of ground India hematite fines and fired pellets were investigated using optical microscopy. On the basis of the results, a grate-kiln production line with an annual output of 1.2 Mt of oxidized pellets was established in India. This pellet plant operates stably and reliably, further confirming that preparing high-quality pellets with Indian hematite fines pretreated by dry ball milling is an industrially feasible process. © 2017, University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg. 展开更多
关键词 Ball milling Blast furnaces Industrial management Kilns Milling (machining) PELLETIZING
下载PDF
Evolution of biomass particles during pelletization process
6
作者 Hamid Rezaei Maryam Tajilrou +3 位作者 Jun Sian Lee Kanages Singaraveloo Anthony Lau Shahab Sokhansanj 《Particuology》 SCIE EI CAS CSCD 2024年第3期182-187,共6页
Pulverizing is an essential unit operation in co-firing biomass with coal.Pulverizers are only compatible with pellet forms of fibrous biomass materials and crush them down to their original forming particle sizes.Tha... Pulverizing is an essential unit operation in co-firing biomass with coal.Pulverizers are only compatible with pellet forms of fibrous biomass materials and crush them down to their original forming particle sizes.That is why the data on the size distribution of the particles forming a biomass pellet is crucial to achieving optimum combustion conditions.The current study determines the internal particle size distribution of pellets after wet disintegration,following Iso 17830 standard,and aims to suggest improvements to the mentioned standard based on new measured evidence.Experiments were carried out on white wood pellets(no bark)and brown wood pellets containing bark at four water temperatures:20,40,60,and 95℃,with or without stirring.The particle size distribution of the pre-pelletizer wood particles was also measured and compared with particles in the formed pellets.Ambient water temperature of 20℃ was found to be adequate for the complete disintegration of pellets,and no mechanical stirring was required.About 30% of particles in the disintegrated pellets were 0.5-1.0 mm.Pelletization changes the particle size distribution to smaller particles.The disintegrated bark pellets contained more fines than white pellets. 展开更多
关键词 Wood pellets Particle sizes distribution Wet disintegration STIRRING Water temperature
原文传递
Ability for Self-Pelletization of Iron Ores and Magnetite Concentrates 被引量:5
7
作者 Francik Przemysaw Jan Mróz 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2011年第6期1-7,共7页
A procedure for evaluating the susceptibility of raw materials for the process of sintering of iron ore mixes is presented. The procedure relies on the evaluation of the amount and quality of the finest grain fraction... A procedure for evaluating the susceptibility of raw materials for the process of sintering of iron ore mixes is presented. The procedure relies on the evaluation of the amount and quality of the finest grain fraction. The method is based on determination of particular grain fractions. For the grain less than 0.15 mm, the determination of the a- mount is performed using an IPS (Infrared Particles Sizer) grain size analyzer and for the grain larger than 0.15 ram, the fraction is determined using the (wet and dry) screening methods. This allows for quantity assessment of the quality of material in terms of its susceptibility to self-pelletizing by calculating Total Ability for SelPPelletizing (TASP) index fT. The presented method, in combination with the grain size and chemical analyses, can serve for evaluation of suitability of raw material and mixes for the sintering process. Furthermore, the TASP index for 10 types of iron ores and concentrates was determined. The usability of the TASP index was verified by determination of its impact on yield of sintering process both in laboratory and in industry scale. 展开更多
关键词 iron ore CONCENTRATE grain composition pelletization process sintering process productivity
原文传递
Modeling and analysis of pelletization process based on a multi-hole pelletizing device 被引量:1
8
作者 Qinghai Jiang Kai Wu Yu Sun 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2019年第1期17-23,共7页
A multi-hole pelletizing device(MPD)was proposed to simulate the granular extrusion process of animal feed due to its cheap,fast,and controllable features.The compression mechanism was analyzed and discussed according... A multi-hole pelletizing device(MPD)was proposed to simulate the granular extrusion process of animal feed due to its cheap,fast,and controllable features.The compression mechanism was analyzed and discussed according to the compression force-time curve.This study applied response surface methodology(RSM)with a central composite design(CCD)to develop predictive models for the compression force Fout and the pellet properties which includes pellet densityρp,pellet moisture content Mcp,and pellet tensile strength Dp based on the MPD.The effects of feedstock moisture content Mcf(10%-18%w.b.),feedstock particle size Sf(8 meshes-24 meshes),die temperature Td(70°C-110°C)and compression speed Vc(5 mm/min to 25 mm/min)were investigated.Response surface models developed for the compression force and pellet properties have adequately described the pelleting process(R^(2)>0.95).The results showed the significant effects of all factors and most of the squared and interaction terms on the compression force and pellet physical properties.It can be concluded from the present study that moisture content and die temperature,followed by compression speed and feedstock particle size are the interacting process factors influencing compression force and pellet properties. 展开更多
关键词 animal feed pelletization MODELING compression force response surface methodology analysis of variance
原文传递
Simulation of deuterium pellet ablation and deposition in the EAST tokamak with HPI2 code
9
作者 李大正 张洁 +2 位作者 侯吉磊 李懋 孙继忠 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期561-569,共9页
Pellet injection is a primary method for fueling the plasma in magnetic confinement devices.For that goal the knowledges of pellet ablation and deposition profiles are critical.In the present study,the pellet fueling ... Pellet injection is a primary method for fueling the plasma in magnetic confinement devices.For that goal the knowledges of pellet ablation and deposition profiles are critical.In the present study,the pellet fueling code HPI2 was used to predict the ablation and deposition profiles of deuterium pellets injected into a typical H-mode discharge on the EAST tokamak.Pellet ablation and deposition profiles were evaluated for various pellet injection locations,with the aim at optimizing the pellet injection to obtain a deep fueling depth.In this study,we investigate the effect of the injection angle on the deposition depth of the pellet at different velocities and sizes.The ablation and deposition of the injected pellet are mainly studied at each injection position for three different injection angles:0°,45°,and 60°.The pellet injection on the high field side(HFS)can achieve a more ideal deposition depth than on the low field side(LFS).Among these angles,horizontal injection on the middle plane is relatively better on either the HFS or the LFS.When the injection location is 0.468 m below the middle plane on the HFS or 0.40 m above the middle plane of the LFS,it can achieve a similar deposition depth to the one of its corresponding side.When the pre-cooling effect is taken into account,the deposition depth is predicted to increase only slightly when the pellet is launched from the HFS.The findings of this study will serve as a reference for the update of pellet injection systems for the EAST tokamak. 展开更多
关键词 pellet injection pellet ablation HPI2 pellet deposition
下载PDF
High-chromium vanadium-titanium magnetite all-pellet integrated burden optimization and softening-melting behavior based on flux pellets
10
作者 Bojian Chen Tao Jiang +4 位作者 Jing Wen Guangdong Yang Tangxia Yu Fengxiang Zhu Peng Hu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期498-507,共10页
High-chromium vanadium-titanium magnetite(HVTM)is a crucial polymetallic-associated resource to be developed.The allpellet operation is a blast furnace trend that aims to reduce carbon dioxide emissions in the future.... High-chromium vanadium-titanium magnetite(HVTM)is a crucial polymetallic-associated resource to be developed.The allpellet operation is a blast furnace trend that aims to reduce carbon dioxide emissions in the future.By referencing the production data of vanadium-titanium magnetite blast furnaces,this study explored the softening-melting behavior of high-chromium vanadium-titanium magnetite and obtained the optimal integrated burden based on flux pellets.The results show that the burden with a composition of 70wt%flux pellets and 30wt%acid pellets exhibits the best softening-melting properties.In comparison to that of the single burden,the softening-melting characteristic temperature of this burden composition was higher.The melting interval first increased from 307 to 362℃and then decreased to 282℃.The maximum pressure drop(ΔPmax)decreased from 26.76 to 19.01 kPa.The permeability index(S)dropped from 4643.5 to 2446.8 kPa·℃.The softening-melting properties of the integrated burden were apparently improved.The acid pellets played a role in withstanding load during the softening process.The flux pellets in the integrated burden exhibited a higher slag melting point,which increased the melting temperature during the melting process.The slag homogeneity and the TiC produced by over-reduction led to the gas permeability deterioration of the single burden.The segregation of the flux and acid pellets in the HVTM proportion and basicity mainly led to the better softening-melting properties of the integrated burden. 展开更多
关键词 high-chromium vanadium-titanium magnetite softening-melting properties all pellets integrated burden flux pellets
下载PDF
Pelleting and particle size reduction of corn increase net energy and digestibility of fiber,protein,and fat in corn-soybean meal diets fed to group-housed pigs
11
作者 Su A Lee Diego A.Rodriguez +1 位作者 Chad B.Paulk Hans H.Stein 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第4期1751-1760,共10页
Background Reduction of the particle size of corn increases energy digestibility and concentrations of digestible and metabolizable energy.Pelleting may also reduce particle size of grain,but it is not known if there ... Background Reduction of the particle size of corn increases energy digestibility and concentrations of digestible and metabolizable energy.Pelleting may also reduce particle size of grain,but it is not known if there are interactions between particle size reduction and pelleting.The objective of this experiment was to test the hypothesis that particle size reduction and pelleting,separately or in combination,increase N balance,apparent total tract digestibility(ATTD)of fiber and fat,and net energy(NE)in corn-soybean meal diets fed to group-housed pigs.Methods Six corn-soybean meal-based diets were used in a 3×2 factorial design with 3 particle sizes of corn(i.e.,700,500,or 300μm)and 2 diet forms(i.e.,meal or pelleted).Pigs were allowed ad libitum access to feed and water.Twenty-four castrated male pigs(initial weight:29.52 kg;standard diviation:1.40)were allotted to the 6 diets using a 6×6 Latin square design with 6 calorimeter chambers(i.e.,4 pigs/chamber)and 6 periods.Oxygen consumption and CO_(2)and CH_(4)productions were measured during fed and fasting states and fecal and urine samples were collected.Results Regardless of particle size of corn,the ATTD of gross energy(GE),N,and acid-hydrolyzed ether extract(AEE),and the concentration of NE were greater(P<0.05)in pelleted diets than in meal diets.Regardless of diet form,the ATTD of GE,N,and AEE,and the concentration of NE were increased(linear;P<0.05)by reducing the particle size of corn,but the increase was greater in meal diets than in pelleted diets(interaction;P<0.05).Conclusions Both pelleting and reduction of corn particle size increased nutrient digestibility and NE,but increases were greater in meal diets than in pelleted diets. 展开更多
关键词 CORN DIGESTIBILITY Feed technology Net energy Particle size PELLETING
下载PDF
Effect of titanium on the sticking of pellets based on hydrogen metallurgy shaft furnace:Behavior analysis and mechanism evolution
12
作者 Jinge Feng Jue Tang +4 位作者 Zichuan Zhao Mansheng Chu Aijun Zheng Xiaobing Li Xiao’ai Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期282-291,共10页
Direct reduction based on hydrogen metallurgical gas-based shaft furnace is a promising technology for the efficient and low-carbon smelting of vanadium-titanium magnetite.However,in this process,the sticking of pelle... Direct reduction based on hydrogen metallurgical gas-based shaft furnace is a promising technology for the efficient and low-carbon smelting of vanadium-titanium magnetite.However,in this process,the sticking of pellets occurs due to the aggregation of metal-lic iron between the contact surfaces of adjacent pellets and has a serious negative effect on the continuous operation.This paper presents a detailed experimental study of the effect of TiO2 on the sticking behavior of pellets during direct reduction under different conditions.Results showed that the sticking index(SI)decreased linearly with the increasing TiO2 addition.This phenomenon can be attributed to the increase in unreduced FeTiO3 during reduction,leading to a decrease in the number and strength of metallic iron interconnections at the sticking interface.When the TiO2 addition amount was raised from 0 to 15wt%at 1100°C,the SI also increased from 0.71%to 59.91%.The connection of the slag phase could be attributed to the sticking at a low reduction temperature,corresponding to the low sticking strength.Moreover,the interconnection of metallic iron became the dominant factor,and the SI increased sharply with the increase in re-duction temperature.TiO2 had a greater effect on SI at a high reduction temperature than at a low reduction temperature. 展开更多
关键词 TITANIUM sticking index hydrogen metallurgy direct reduction PELLETS
下载PDF
Diffusion and reaction mechanism of limestone and quartz in fluxed iron ore pellet roasting process
13
作者 Yufeng Guo Jinlai Zhang +5 位作者 Shuai Wang Jianjun Fan Haokun Li Feng Chen Kuo Liu Lingzhi Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期485-497,共13页
The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process.In this study,the interaction between calcium carbonate and iron or... The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process.In this study,the interaction between calcium carbonate and iron ore powder and the mineralization mechanism of fluxed iron ore pellet in the roasting process were investigated through diffusion couple experiments.Scanning electron microscopy with energy dispersive spectroscopy was used to study the elements’diffusion and phase transformation during the roasting process.The results indicated that limestone decomposed into calcium oxide,and magnetite was oxidized to hematite at the early stage of preheating.With the increase in roasting temperature,the diffusion rate of Fe and Ca was obviously accelerated,while the diffusion rate of Si was relatively slow.The order of magnitude of interdiffusion coefficient of Fe_(2)O_(3)-CaO diffusion couple was 10^(−10) m^(2)·s^(−1) at a roasting temperature of 1200℃for 9 h.Ca_(2)Fe_(2)O_(5) was the initial product in the Fe_(2)O_(3)-CaO-SiO_(2) diffusion interface,and then Ca_(2)Fe_(2)O_(5) continued to react with Fe_(2)O_(3) to form CaFe_(2)O_(4).With the expansion of the diffusion region,the sillico-ferrite of calcium liquid phase was produced due to the melting of SiO_(2) into CaFe_(2)O_(4),which can strengthen the consolidation of fluxed pellets.Furthermore,andradite would be formed around a small part of quartz particles,which is also conducive to the consolidation of fluxed pellets.In addition,the principle diagram of limestone and quartz diffusion reaction in the process of fluxed pellet roasting was discussed. 展开更多
关键词 fluxed iron ore pellet LIMESTONE HEMATITE QUARTZ diffusion reaction
下载PDF
Industrial utilization of arsenic-containing gold dressing tailings as pellet prepared by straight grate process
14
作者 LIU Wei GUO Zheng-qi +5 位作者 ZHU De-qing PAN Jian ZHANG Wu-ju WANG Jin ZHANG Ying-qun YIN Fu-xing 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期1888-1899,共12页
The utilization of arsenic-containing gold dressing tailings is an urgent issue faced by gold production companies worldwide.The thermodynamic analysis results indicate that ferrous arsenate(FeAsO_(4)),pyrite(FeS_(2))... The utilization of arsenic-containing gold dressing tailings is an urgent issue faced by gold production companies worldwide.The thermodynamic analysis results indicate that ferrous arsenate(FeAsO_(4)),pyrite(FeS_(2))and sodium cyanide(NaCN)in the arsenic-containing gold metallurgical tailings can be effectively removed using straight grate process,and the removal of pyrite and sodium cyanide is basically completed during the preheating stage,while the removal of ferrous arsenate requires the roasting stage.The pellets undergo a transformation from magnetite to hematite during the preheating process,and are solidified through micro-crystalline bonding and high-temperature recrystallization of hematite(Fe_(2)O_(3))during the roasting process.Ultimately,pellets with removal rates of 80.77% for arsenic,88.78% for sulfur,and 99.88% for cyanide are obtained,as well as the iron content is 61.1% and the compressive strength is 3071 N,meeting the requirements for blast furnace burden.This study provides an industrially feasible method for treating arsenic-containing gold smelting tailings,benefiting gold production enterprises. 展开更多
关键词 arsenic-containing gold dressing tailings pelletizing straight grate process recycling
下载PDF
Optimization of binder addition and compression load for pelletization of wheat straw using response surface methodology 被引量:4
15
作者 Lu Donghui Lope G.Tabil +2 位作者 Wang Decheng Wang Guanghui Wang Zhiqin 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2014年第6期67-78,I0002,共13页
Densification is required for efficiently handling and transporting biomass as feedstock for biofuel production.Binders can enhance straw pellet strength and improve the pellet performance.The present investigation ai... Densification is required for efficiently handling and transporting biomass as feedstock for biofuel production.Binders can enhance straw pellet strength and improve the pellet performance.The present investigation aimed to optimize binders and compression load for wheat straw pelletization using a single pelleting unit.Response surface methodology was employed by using a four-factor,five-level central composite design with wood residue(%,w/w),bentonite(%,w/w),crude glycerol(%,w/w),and compression load(N)as process parameters.The pellet tensile strength,specific energy consumption of pelleting,and pellet density were the response variables.The higher heating value,ash content of the pellet product and the cost of the feedstock were also considered in optimizing binder addition.The developed model fitted the data and was adequate for binder analysis and optimization.Wheat straw pellet,with the addition of 30% wood residue,0.80% bentonite,and 3.42% crude glycerol,in addition to 4000 N of compressive load,was identified as optimal with good performance of pellet tensile strength(1.14 MPa),specific energy consumption(32.6 kJ/kg),and pellet density(1094 kg/m^(3))as well as low ash content(6.13%)and high heating value(18.64 MJ/kg).Confirmation tests indicated high accuracy of the model. 展开更多
关键词 biomass wheat straw pellet BINDER wood residue BENTONITE crude glycerol RSM compression load
原文传递
Probing deactivation by coking in catalyst pellets for dry reforming of methane using a pore network model 被引量:2
16
作者 Yu Wang Qunfeng Zhang +3 位作者 Xinlei Liu Junqi Weng Guanghua Ye Xinggui Zhou 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第3期293-303,共11页
Dry reforming of methane(DRM) is an attractive technology for utilizing the greenhouse gases(CO_(2) and CH_(4)) to produce syngas. However, the catalyst pellets for DRM are heavily plagued by deactivation by coking, w... Dry reforming of methane(DRM) is an attractive technology for utilizing the greenhouse gases(CO_(2) and CH_(4)) to produce syngas. However, the catalyst pellets for DRM are heavily plagued by deactivation by coking, which prevents this technology from commercialization. In this work, a pore network model is developed to probe the catalyst deactivation by coking in a Ni/Al_(2)O_(3) catalyst pellet for DRM. The reaction conditions can significantly change the coking rate and then affect the catalyst deactivation. The catalyst lifetime is higher under lower temperature, pressure, and CH_(4)/CO_(2) molar ratio, but the maximum coke content in a catalyst pellet is independent of these reaction conditions. The catalyst pellet with larger pore diameter, narrower pore size distribution and higher pore connectivity is more robust against catalyst deactivation by coking, as the pores in this pellet are more difficult to be plugged or inaccessible.The maximum coke content is also higher for narrower pore size distribution and higher pore connectivity, as the number of inaccessible pores is lower. Besides, the catalyst pellet radius only slightly affects the coke content, although the diffusion limitation increases with the pellet radius. These results should serve to guide the rational design of robust DRM catalyst pellets against deactivation by coking. 展开更多
关键词 Deactivation by coking Dry reforming of methane Pore network model Diffusion limitation Catalyst pellet
下载PDF
Effect mechanism of aluminum occurrence and content on the induration characteristics of iron ore pellets
17
作者 Hongyu Tian Deqing Zhu +3 位作者 Jian Pan Congcong Yang Weiqun Huang Mansheng Chu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第12期2334-2346,共13页
With the intensified depletion of high-grade iron ores,the increased aluminum content in iron ore concentrates has become unavoidable,which is detrimental to the pelletization process.Therefore,the effect mechanism of... With the intensified depletion of high-grade iron ores,the increased aluminum content in iron ore concentrates has become unavoidable,which is detrimental to the pelletization process.Therefore,the effect mechanism of aluminum on pellet quality must be identified.In this study,the influence of aluminum occurrence and content on the induration of hematite(H)and magnetite(M)pellets was investigated through the addition of corresponding Al-containing additives,including alumina,alumogoethite,gibbsite,and kaolinite.Systematic mineralogical analysis,combined with the thermodynamic properties of different aluminum occurrences and the quantitative characterization of consolidation behaviors,were conducted to determine the related mechanism.The results showed that the alumina from various aluminum occurrences adversely affected the induration characteristics of pellets,especially at an aluminum content of more than 2.0wt%.The thermal decomposition of gibbsite and kaolinite tends to generate internal stress and fine cracks,which hinder the respective microcrystalline bonding and recrystallization between Fe2O3particles.The adverse effect on the induration characteristics of fired pellets with different aluminum occurrences can be relieved to varying degrees through the formation of liquid phase bonds between the hematite particles.Kaolinite is more beneficial to the induration process than the other three aluminum occurrences because of the formation of more liquid phase,which improves pellet consolidation.The research results can further provide insights into the effect of aluminum occurrence and content in iron ore concentrates on downstream processing and serve as a guide for the utilization of high-alumina iron ore concentrates in pelletization. 展开更多
关键词 iron ore PELLET aluminum occurrence consolidation behavior element migration
下载PDF
Elucidating the suppression of lithium dendrite growth with a void-reduced anti-perovskite solid-state electrolyte pellet for stable lithium metal anodes
18
作者 Yu YeXinyan Ye Haoxian Zhu +3 位作者 Juncao Bian Haibin Lin Jinlong Zhu Yusheng Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期62-69,I0003,共9页
Solid-state lithium-metal batteries,with their high theoretical energy density and safety,are highly promising as a next-generation battery contender.Among the alternatives proposed as solid-state electrolyte,lithium-... Solid-state lithium-metal batteries,with their high theoretical energy density and safety,are highly promising as a next-generation battery contender.Among the alternatives proposed as solid-state electrolyte,lithium-rich anti-perovskite(Li RAP)materials have drawn the most interest because of high theoretical Li^(+)conductivity,low cost and easy processing.Although solid-state electrolytes are believed to have the potential to physically inhibit the lithium dendrite growth,lithium-metal batteries still suffer from the lithium dendrite growth and thereafter the short circuiting.The voids in practical Li RAP pellets are considered as the root cause.Herein,we show that reducing the voids can effectively suppress the lithium dendrite growth.The voids in the pellet resulted in an irregular Li^(+)flux distribution and a poor interfacial contact with lithium metal anode;and hence the ununiform lithium dendrites.Consequently,the lithium-metal symmetric cell with void-reduced Li_(2)OHCl-HT pellet was able to display excellent cycling performance(750 h at 0.4 m A cm^(-2))and stability at high current density(0.8 m A cm^(-2)for 120 h).This study provides not only experimental evidence for the impact of the voids in Li RAP pellets on the lithium dendrite growth,but also a rational pellet fabrication approach to suppress the lithium dendrite growth. 展开更多
关键词 Llithium-rich anti-perovskite Solid-state electrolytes Void-reduced pellets Lithium dendrites Lithium metal anodes
下载PDF
The Logistics of Production and Supply of Ag Pellets for Industrial Applications in Canada
19
作者 Shahabaddine Sokhansanj Mahmood Ebadian +1 位作者 Hamid Rezaei Fahimeh Yazdanpanah 《Journal of Sustainable Bioenergy Systems》 CAS 2023年第1期40-55,共16页
In this work we analyze the supply of biomass from field to an in-land or port destination. The biomass is pelletized to increase its bulk density to extend its storage period and for ease of its transport. The pellet... In this work we analyze the supply of biomass from field to an in-land or port destination. The biomass is pelletized to increase its bulk density to extend its storage period and for ease of its transport. The pellet may be used for conversion to chemicals and animal bedding or for straight combustion. We analyzed supply chain in Saskatchewan where there are plenty of crop residues but widely dispersed and harvest seasons are short. We envisioned that the farmer collects bales from field and transports the bales to farmstead during the harvest season. The bales are then processed into pellets using small scale pellet equipment. A custom operator with expertise in pelletization may engage in handling and densifying the biomass. The business case for the mobile mill will be similar to the well established custom grain and forage harvesting operations. The pellets are stored in hopper bottom grain bins at the farmstead. From this point, the handling of pellets would be similar to the handling and marketing of grain. The farmer trucks a specified volume of pellets from farmstead to the nearest elevator where the pellets are transferred to larger bins or silos. Pellets are extracted from silos and loaded onto the rail cars. The Canadian freight rail companies (mainly CN) currently transport over 3 million dry tonne (dt) of wood pellets in rail cars. The pellets are hauled to marine ports on the West Coast or East Coast for export. The cost of delivering ag pellets to biorefinery or to the shipping port is $86.09/dt. This cost does not include the equivalent value of removing biomass from the farm (e.g. fertilizer replacement) and return on investment. The GHG emissions to produce and transport ag pellets add up to 185.9 kg of CO<sub>2</sub> per dt of biomass. The cost of producing pellets without drying feedstock is $35.05/dt and the corresponding GHG for palletization amounts $146.30/dt. 展开更多
关键词 CANADA PELLETS Ag Pellets Supply Chain LOGISTICS Cost GHG Emissions INFRASTRUCTURE
下载PDF
Advanced Strategies to Mobilize Crop Residue to Replace Coal in India
20
作者 Shahabaddine Sokhansanj Yogender Kumar Yadav +3 位作者 Anthony Lau   Yadvika Kanishk Verma Nitin Karwasra 《Journal of Sustainable Bioenergy Systems》 2023年第2期57-72,共16页
Various published data show the amount of crop residue available annually in India may range from a low of 90 to a high of 180 million tonnes. Different types of crop residue are collected from farmers depending on th... Various published data show the amount of crop residue available annually in India may range from a low of 90 to a high of 180 million tonnes. Different types of crop residue are collected from farmers depending on the geography and crop pattern for instance, in north India rice straw and cotton stalks are collected while in central India soya husk and sugarcane tops are collected. Baling and transporting straw from the field, though appear to be an option for safe disposal, will be feasible only when alternate, effective and economically viable usage methods are identified and facilities and infrastructure for ex-situ management methods are created. One immediate short term use of the residue is to replace 5% - 7% of the 670 million tonnes of coal India currently consumes to generate power. The farmers will benefit from the sale of their excess crop residue. The scheme will reduce pollution due to residue burning practices. Replacing coal will cut the GHG emissions. The challenge is to mobilize the crop residue collection and timely delivery to power plants. The data and calculations in this monogram show that it is economical for the farmer to remove the crop residue from the field quickly by using modern balers, to pelletize the biomass in small-scale distributed pellet plants, to store pellets in the modern steel bins and finally to deliver the pellets to coal plants by using rail transport. The delivered cost is estimated at around Rp 6.78/kg. The Government of India encourages the power plants to pay at least Rp 10/kg for the delivered biomass in the form of pellets. The current monogram analyzes the organization of an efficient supply chain in the State of Haryana India to ensure a sustainable modern enterprise. 展开更多
关键词 INDIA PELLETS Power Plant COAL Ag pellets Supply Chain LOGISTICS Storage Bins Rail Transport Cost Estimates GHG Emissions INFRASTRUCTURE
下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部