期刊文献+
共找到33篇文章
< 1 2 >
每页显示 20 50 100
Diffusion and reaction mechanism of limestone and quartz in fluxed iron ore pellet roasting process 被引量:1
1
作者 Yufeng Guo Jinlai Zhang +5 位作者 Shuai Wang Jianjun Fan Haokun Li Feng Chen Kuo Liu Lingzhi Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期485-497,共13页
The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process.In this study,the interaction between calcium carbonate and iron or... The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process.In this study,the interaction between calcium carbonate and iron ore powder and the mineralization mechanism of fluxed iron ore pellet in the roasting process were investigated through diffusion couple experiments.Scanning electron microscopy with energy dispersive spectroscopy was used to study the elements’diffusion and phase transformation during the roasting process.The results indicated that limestone decomposed into calcium oxide,and magnetite was oxidized to hematite at the early stage of preheating.With the increase in roasting temperature,the diffusion rate of Fe and Ca was obviously accelerated,while the diffusion rate of Si was relatively slow.The order of magnitude of interdiffusion coefficient of Fe_(2)O_(3)-CaO diffusion couple was 10^(−10) m^(2)·s^(−1) at a roasting temperature of 1200℃for 9 h.Ca_(2)Fe_(2)O_(5) was the initial product in the Fe_(2)O_(3)-CaO-SiO_(2) diffusion interface,and then Ca_(2)Fe_(2)O_(5) continued to react with Fe_(2)O_(3) to form CaFe_(2)O_(4).With the expansion of the diffusion region,the sillico-ferrite of calcium liquid phase was produced due to the melting of SiO_(2) into CaFe_(2)O_(4),which can strengthen the consolidation of fluxed pellets.Furthermore,andradite would be formed around a small part of quartz particles,which is also conducive to the consolidation of fluxed pellets.In addition,the principle diagram of limestone and quartz diffusion reaction in the process of fluxed pellet roasting was discussed. 展开更多
关键词 fluxed iron ore pellet LIMESTONE HEMATITE QUARTZ diffusion reaction
下载PDF
Action rules of H_2 and CO in gas-based direct reduction of iron ore pellets 被引量:6
2
作者 易凌云 黄柱成 +1 位作者 彭虎 姜涛 《Journal of Central South University》 SCIE EI CAS 2012年第8期2291-2296,共6页
Alastraet: The gas-based direct reduction of iron ore pellets was carried out by simulating the typical gas composition in coal gasification process, Midrex and HyMII processes. The influences of gas composition and ... Alastraet: The gas-based direct reduction of iron ore pellets was carried out by simulating the typical gas composition in coal gasification process, Midrex and HyMII processes. The influences of gas composition and temperature on reduction were studied. Results show that the increasing of HE proportion is helpful to improve the reduction rate. However, when ~o(H2):~o(CO)〉1.6:1, changes of HE content have little influence on it. Appropriate reduction temperature is about 950 ℃, and higher temperature (1 000 ℃) may unfavorably slow the reduction rate. From the kinetics analysis at 950 ℃, the most part of reduction course is likely controlled by interfacial chemical reaction mechanism and in the final stage controlled by a combined effect of gaseous diffusion and interfacial chemical reaction mechanisms. From the utilizations study of different reducing gases at 950 ℃, the key step in reduction course is the 3rd stage (FeO→Fe), and the utilization of reducing gas increases with the rise of HE proportion. 展开更多
关键词 iron ore pellets coal gas gas-based direct reduction reduction kinetics gas utilization
下载PDF
Effect of CaO and CaCO3 on Reduction Rate of Iron Ore Pellets Containing Carbon 被引量:4
3
作者 YANG Xue-min XIE Yu-sheng +3 位作者 WANG Da-guang HUANG Dian-bing KONG Ling-tan YANG Tian-jun 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2000年第2期1-5,共5页
The effect of metallurgical fluxes CaO and CaCO3 on the reduction rate of iron ore pellets containing carbon in nitrogen atmosphere has been studied by a weight-loss thermal balance. The experimental results showed th... The effect of metallurgical fluxes CaO and CaCO3 on the reduction rate of iron ore pellets containing carbon in nitrogen atmosphere has been studied by a weight-loss thermal balance. The experimental results showed that adding CaO or CaCO3 can promote reduction reaction as the added CaO or CaCO3 probably decrease the apparent activation energy of iron ore concentrate-carbon-CaO or CaCO3 reaction, and the reduction rate constant changes with mass percent of CaO and CaCO3. The kinetic analysis also showed that the rate-controlling step of the reaction is inner gas diffusion. 展开更多
关键词 iron ore pellet containing carbon reduction rate CAO CACO3
下载PDF
Mathematical models and expert system for grate-kiln process of iron ore oxide pellet production.Part Ⅱ:Rotary kiln process control 被引量:7
4
作者 范晓慧 王祎 陈许玲 《Journal of Central South University》 SCIE EI CAS 2012年第6期1724-1727,共4页
Rotary kiln process for iron ore oxide pellet production is hard to detect and control.Construction of one-dimensional model of temperature field in rotary kiln was described.And the results lay a solid foundation for... Rotary kiln process for iron ore oxide pellet production is hard to detect and control.Construction of one-dimensional model of temperature field in rotary kiln was described.And the results lay a solid foundation for online control.Establishment of kiln process control expert system was presented,with maximum temperature of pellet and gas temperature at the feed end as control cores,and interval estimate as control strategy.Software was developed and put into application in a pellet plant.The results show that control guidance of this system is accurate and effective.After production application for nearly one year,the compressive strength and first grade rate of pellet are increased by 86 N and 2.54%,respectively,while FeO content is 0.05% lowered.This system can reveal detailed information of real time kiln process,and provide a powerful tool for online control of pellet production. 展开更多
关键词 mathematical model expert system one-dimensional temperature field rotary kiln iron ore oxide pellet
下载PDF
Cooling process of iron ore pellets in an annular cooler 被引量:3
5
作者 Jun-xiao Feng Kai-li Liang +3 位作者 Zhi-bin Sun Jing-hai Xu Yong-ming Zhang Jin-bao Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2011年第3期285-291,共7页
A 3-D mathematical model was presented for the cooling process of iron ore pellets based on the laws of mass, momentum, and heat transfer. The flow, pressure, and temperature fields were obtained by numerical simulati... A 3-D mathematical model was presented for the cooling process of iron ore pellets based on the laws of mass, momentum, and heat transfer. The flow, pressure, and temperature fields were obtained by numerical simulation with the commercial software FLUENT. In order to verify the model, a mass and energy balance field test was systematically carried out on an annular cooler in Shougang Mining Company. The maximum relative errors of temperature, pressure, and velocity between computational and testing results are 2.87%, -8.11%, and 7.14%, respectively, indicating the validity of the model. Further, the effects of process parameters, such as pellet diameter, bed thickness, air velocity, and temperature, on the pellet bed temperature profiles were studied. 展开更多
关键词 iron ore pellets mathematical models COOLING numerical analysis
下载PDF
Sticking of iron ore pellets in direct reduction with hydrogen and carbon monoxide:Behavior and prevention 被引量:3
6
作者 易凌云 黄柱成 +1 位作者 李铁辉 姜涛 《Journal of Central South University》 SCIE EI CAS 2014年第2期506-510,共5页
A series of reduction experiments of iron ore pellets with hydrogen,carbon monoxide and their mixture were carried out in a laboratory scale shaft furnace.The sticking behavior accompanying reduction of iron ore pelle... A series of reduction experiments of iron ore pellets with hydrogen,carbon monoxide and their mixture were carried out in a laboratory scale shaft furnace.The sticking behavior accompanying reduction of iron ore pellets was investigated.And morphology of the sticking interface forming during reduction was analyzed by SEM equipped with EDS.In order to evaluate the effects of the temperature and gas composition on sticking properties,reduction of iron ore pellets were conducted at 800-1000 ℃.The results show that the sticking strength of the pellets increases with temperature,however,decreases with hydrogen content in reducing gas.For an efficient shaft furnace operation in direct reduction(DR),relative prevention of sticking such as coating of pellets was also developed to solve sticking problem.The results show that CaO is a suitable material for the coating method. 展开更多
关键词 iron ore pellet direct reduction STICKING coating of pellets
下载PDF
Mathematical models and expert system for grate-kiln process of iron ore oxide pellet production(Part Ⅰ):Mathematical models of grate process 被引量:4
7
作者 王祎 范晓慧 陈许玲 《Journal of Central South University》 SCIE EI CAS 2012年第4期1092-1097,共6页
Grate process is an important step in grate-kiln pellet production.However,as a relatively closed system,the process on grate is inaccessible to direct detection,therefore,it is hard to control.As a result,mathematica... Grate process is an important step in grate-kiln pellet production.However,as a relatively closed system,the process on grate is inaccessible to direct detection,therefore,it is hard to control.As a result,mathematical models of temperature distribution,moisture distribution and oxidation degree distribution in pellet bed,with good universality,computation speed and calculation accuracy,are presented based on analysis of heat transfer and physical-chemical reactions during grate process.And real-time visualization of temperature,moisture and oxidation degree distribution in pellet bed during grate process is realized.Model validation is displayed,and the similarity of 91% is proved.The results can reveal real time status on grate,and provide a solid foundation for the subsequent study of artificial intelligence control system of pellet production. 展开更多
关键词 mathematical model temperature distribution moisture distribution oxidation degree distribution iron ore oxide pellet
下载PDF
Study on Direct Reduction Characteristics of Iron Ore Coal Mixed Pellets 被引量:2
8
作者 XUE Zheng-Hang YOU Jin-zhou ZHOU Guo-fan 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2000年第2期6-10,共5页
In order to get DRI iron ore coal mixed pellets are reduced isothermally. The mechanisms of reduction desulphurization, iron oxide reduction and the structure regenesis of the coal mixed pellets during reduction have ... In order to get DRI iron ore coal mixed pellets are reduced isothermally. The mechanisms of reduction desulphurization, iron oxide reduction and the structure regenesis of the coal mixed pellets during reduction have been studied. The effect of various processing factors on the quality of DRI and economy technological indices including compression strength, desulphurization rate, recovery rate, reaction fraction, carbon content and metallization are also researched. 展开更多
关键词 iron ore coal mixed pellet DRI reduction desulphurization
下载PDF
REDUCTION BEHAVIOR OF IRON ORE PELLETS CONTAININGCARBON UNDER NON-ISOTHERMAL CONDITION
9
作者 X.M.Yang Y.S.Xie +3 位作者 D.G.Wang D.B.Huang T.J.Yang L.T.Kong 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第5期1059-1067,共9页
The reduction behavior of iron ore pellets containing carbon under non-isothermal condition in the temperature range from 573 to 1373 K was investigated in a laboratory scale setup. The test results show that carbon c... The reduction behavior of iron ore pellets containing carbon under non-isothermal condition in the temperature range from 573 to 1373 K was investigated in a laboratory scale setup. The test results show that carbon content has no obvious effect on reduction degree of composite pellets (C/O mole ratio=1.0) by CO in the temperature range from 573 to 1373 K under linear temperature-rising program; reduction degree of iron ore pellets containing carbon is large in 90%CO-10%CO2 mixture than that of in 100%CO atmosphere or in 80%CO-20%CO2 mixture; the s type temperature-rising program has a better effect than that of linear one in increasing the reduction degree; and reduction degree of slower linear temperature-rising program is greater than that of faster one, but the final reduction degrees, i.e., those at the highest temperature are about the same for various CO partial pressures or temperature-rising programs. The kinetic analysis also shows that the reduction of iron ore-carbon composite pellets by CO or CO-CO2 mixture under non-isothermal condition should be controlled by surface reaction, and the apparent reduction activation energy changes with the reduction progress under various test conditions. 展开更多
关键词 iron ore pellet containing carbon reduction behavior KINETICS activation energy NON-ISOTHERMAL
下载PDF
Utilization of waste polyethylene terephthalate as a reducing agent in the reduction of iron ore composite pellets
10
作者 Gkhan Polat Burak Birol Muhlis Nezihi Saridede 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第8期748-754,共7页
The increasing consumption of plastics inevitably results in increasing amounts of waste plastics. Because of their long degradation periods, these wastes negatively affect the natural environment. Numerous studies ha... The increasing consumption of plastics inevitably results in increasing amounts of waste plastics. Because of their long degradation periods, these wastes negatively affect the natural environment. Numerous studies have been conducted to recycle and eliminate waste plastics. The potential for recycling waste plastics in the iron and steel industry has been underestimated; the high C and H contents of plastics may make them suitable as alternative reductants in the reduction process of iron ore. This study aims to substitute plastic wastes for coal in reduction melting process and to investigate their performance during reduction at high temperature. We used a common type of waste plastic, polyethylene terephthalate (PET), because of its high carbon and hydrogen contents. Composite pellets containing PET wastes, coke, and magnetite iron ore were reduced at selected temperatures of 1400 and 1450℃ for reduction time from 2 to 10 min to investigate the reduction melting behavior of these pellets. The results showed that an increased temperature and reduction time increased the reduction ratio of the pellets. The optimum experimental conditions for obtaining metallic iron (iron nuggets) were reduction at 1450℃ for 10 min using composite pellets containing 60% PET and 40% coke. 展开更多
关键词 polyethylene terephthalate (PET) waste recycling reducing agents iron ore pellets ore reduction
下载PDF
Numerical simulation of the direct reduction of pellets in a rotary hearth furnace for zinc-containing metallurgical dust treatment 被引量:10
11
作者 Yu-liang Wu Ze-yi Jiang +2 位作者 Xin-xin Zhang Peng Wang Xue-feng She 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第7期636-644,共9页
A mathematical model was established to describe the direct reduction of pellets in a rotary hearth furnace (RHF). In the model, heat transfer, mass transfer, and gas-solid chemical reactions were taken into account... A mathematical model was established to describe the direct reduction of pellets in a rotary hearth furnace (RHF). In the model, heat transfer, mass transfer, and gas-solid chemical reactions were taken into account. The behaviors of iron metallization and dezincification were analyzed by the numerical method, which was validated by experimental data of the direct reduction of pellets in a Si-Mo furnace. The simulation results show that if the production targets of iron metallization and dezincification are up to 80% and 90%, respectively, the furnace temperature for high-temperature sections must be set higher than 1300~ C. Moreover, an undersupply of secondary air by 20% will lead to a decline in iron metallization rate of discharged pellets by 10% and a decrease in dezincing rate by 13%. In addition, if the residence time of pellets in the furnace is over 20 min, its further extension will hardly lead to an obvious increase in production indexes under the same furnace temperature curve. 展开更多
关键词 rotary hearth furnaces direct reduction process DUST ore pellets DEZINCIFICATION numerical methods
下载PDF
Effect of carbon species on the reduction and melting behavior of boron-bearing iron concentrate/carbon composite pellets 被引量:12
12
作者 Guang Wang Yin-gui Ding +2 位作者 Jing-song Wang Xue-feng She Qing-guo Xue 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第6期522-528,共7页
Iron nugget and boron-rich slag can be obtained in a short time through high-temperature reduction of boron- bearing iron concentrate by carbonaceous material, both of which are agglomerated together as a carbon compo... Iron nugget and boron-rich slag can be obtained in a short time through high-temperature reduction of boron- bearing iron concentrate by carbonaceous material, both of which are agglomerated together as a carbon composite pellet. This is a novel flow sheet for the comprehensive utilization of boron-bearing iron concentrate to produce a new kind of man-made boron ore. The effect of reducing agent species (i.e., carbon species) on the reduction and melting process of the composite pellet was investigated at a laboratory scale in the present work. The results show that, the reduction rate of the composite pellet increases from bituminite, anthracite, to coke at temperatures ranging from 950 to 1300~C. Reduction temperature has an important effect on the microstructure of reduced pellets. Carbon species also affects the behavior of reduced metallic iron particles. The anthracite-bearing composite pellet melts faster than the bituminite- bearing composite pellet, and the coke-bearing composite pellet cannot melt due to the high fusion point of coke ash. With anthracite as the reducing agent, the recovery rates of iron and boron are 96.5% and 95.7%, respectively. This work can help us get a further understanding of the new process mechanism. 展开更多
关键词 iron ore pellets iron ore reduction BORON bituminite ANTHRACITE COKE
下载PDF
Gas-solid reduction kinetic model of MgO-fluxed pellets 被引量:6
13
作者 Qiang-jian Gao Feng-man Shen +2 位作者 Xin Jiang Guo Wei Hai-yan Zheng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第1期12-17,共6页
The reduction process of MgO-fluxed pellets was investigated and compared with traditional acidic pellets in this paper. Based on the piston flow concept and experimental data, a kinetic model fitting for the gas-soli... The reduction process of MgO-fluxed pellets was investigated and compared with traditional acidic pellets in this paper. Based on the piston flow concept and experimental data, a kinetic model fitting for the gas-solid phase reduction of pellets in tubular reactors (blast furnace, BF) was built up, and the equations of reduction reaction rate were given for pellets. A series of reduction experiments of pellets were carried out to verify the model. As a result, the experimental data and calculated result were fitted well. Therefore, this model can well describe the gas-solid phase reduction process and calculate the reduction reaction rate of pellets. Besides, it can give a better explanation that the reduction reaction rate (reducibility) of MgO-fluxed pellets is better than that of traditional acidic pellets in BF. 展开更多
关键词 ore pellets MAGNESIA REDUCTION kinetics blast furnaces
下载PDF
Effect of magnesia on the compressive strength of pellets 被引量:6
14
作者 Feng-man Shen Qiang-jian Gao +2 位作者 Xin Jiang Guo Wei Hai-yan Zheng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第5期431-437,共7页
The compressive strength of MgO-fluxed pellets was investigated before and after they were reduced. The porosity and pore size of green pellets, product pellets, and reduced pellets were analyzed to clarify how MgO af... The compressive strength of MgO-fluxed pellets was investigated before and after they were reduced. The porosity and pore size of green pellets, product pellets, and reduced pellets were analyzed to clarify how MgO affects the strength of the pellets. Experimental resuits show that when the MgO-bearing flux content in the pellets increases from 0.0wt% to 2.0wt%, the compressive strength of the pellets at ambient temperature decreases, but the compressive strength of the pellets after reduction increases. Therefore, the compressive strength of the pellets after reduction exhibits no certain positive correlation with that before reduction. The porosity and pore size of all the pellets (with different MgO contents) increase when the pellets are reduced. However, the increase in porosity of the MgO-fluxed pellets is relatively smaller than that of the traditional non-MgO-fluxed pellets, and the pore size range of the MgO-fluxed pellets is relatively narrower. The reduction swelling index (RSI) is a key factor for governing the compressive strength of the reduced pellets. An approximately reversed linear relation can be concluded that the lower the RSI, the greater the compressive strength of the reduced pellets is. 展开更多
关键词 iron ore pellets compressive strength MAGNESIA ore reduction SWELLING
下载PDF
Optimized use of MgO flux in the agglomeration of high-chromium vanadium–titanium magnetite 被引量:4
15
作者 Jue Tang Man-sheng Chu Xiang-xin Xue 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第4期371-380,共10页
The optimized use of MgO flux in the agglomeration of high-chromium vanadium-titanium magnetite was investigated system- atically through sinter and pellet experiments. MgO was added in the form of magnesite. When the... The optimized use of MgO flux in the agglomeration of high-chromium vanadium-titanium magnetite was investigated system- atically through sinter and pellet experiments. MgO was added in the form of magnesite. When the content of MgO in the sinter was in- creased from 1.95wt% to 2.63wt%, the low-temperature reduction degradation index increased from 80.57% to 82.71%. When the content of MgO in the pellet was increased from 1.14wt% to 2.40wt%, the reduction swelling index decreased from 15.2% to 8.6%; however, the com- pressive strength of the oxidized pellet decreased dramatically and it was 1985 N with an MgO content of 1.14wt%. This compressive strength does not satisfy the requirements for blast-furnace production. When all of the aforementioned results were taken into account, the sinter with a high MgO content (2.63wt%) matching the pellet with a low MgO content (less than 1.14wt%) was the rational burden structure for smelting high-chromium vanadium-titanium magnetite in blast furnaces. 展开更多
关键词 MAGNETITE ore pellets MAGNESIA AGGLOMERATION BURDEN sintering
下载PDF
Behavior of fluxed lime iron oxide pellets in hot metal bath during melting and refining 被引量:4
16
作者 J. Pal S. Ghorai +3 位作者 M. C. Goswami D. Ghosh D. Bandyopadhyay S. Ghosh 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第4期329-337,共9页
Lump lime as a fiux material in a basic oxygen furnace (BOF) often creates problems in operation due to its high melting point, poor dissolution property, hygroscopic nature, and fines generation tendency. To allevi... Lump lime as a fiux material in a basic oxygen furnace (BOF) often creates problems in operation due to its high melting point, poor dissolution property, hygroscopic nature, and fines generation tendency. To alleviate these problems, fluxed lime iron oxide pellets (FLIP) containing 30% CaO were developed in this study using waste iron oxide fines and lime. The suitable handling strengths of the pellet (crushing strength: 300 N; drop strength: 130 times) of FLIP were developed by treating with CO2 or industrial waste gas at room temperature, while no separate binders were used. When the pellet was added into hot metal bath (carbon-containing molten iron), it was decomposed, melted, and transformed to produce low melting oxidizing slag, because it is a combination of main CaO and Fe2O3. This slag is suitable for facilitating P and C removal in refining. Furthermore, the pellet enhances waste utilization and use of CO2 in waste gas. In this article, emphasis is given on studying the behavior of these pellets in hot metal bath during melting and refining along with thermodynamics and kinetics analysis. The observed behaviors of the pellet in hot metal bath confirm that it is suitable and beneficial for use in BOF and replaces lump lime. 展开更多
关键词 ore pellets LIME DISSOLUTION MELTING REFINING basic oxygen converters
下载PDF
Effect of aluminum oxide on the compressive strength of pellets 被引量:3
17
作者 Jian-liang Zhang Zhen-yang Wang +1 位作者 Xiang-dong Xing Zheng-jian Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第4期339-344,共6页
Analytical-reagent-grade Al2O3 was added to magnetite ore during the process of pelletizing, and the methods of mercury intru-sion, scanning electron microscopy, and image processing were used to investigate the effec... Analytical-reagent-grade Al2O3 was added to magnetite ore during the process of pelletizing, and the methods of mercury intru-sion, scanning electron microscopy, and image processing were used to investigate the effect of Al2O3 on the compressive strength of the pellets. The results showed that, as the Al2O3 content increased, the compressive strength of the pellets increased slightly and then decreased gradually. When a small amount of Al2O3 was added to the pellets, the Al2O3 combined with fayalite (2FeO&#183;SiO2) and the aluminosilicate (2FeO&#183;2Al2O3&#183;5SiO2) was generated, which releases some iron oxide and reduces the inhibition of fayalite to the solid phase of consolidation. When Al2O3 increased sequentially, high melting point of Al2O3 particles hinder the oxidation of Fe3O4 and the recrystallization of Fe2O3, making the internal porosity of the pellets increase, which leads to the decrease in compressive strength of the pellets. 展开更多
关键词 MAGNETITE ore pellets alumina compressive strength POROSITY MICROANALYSIS
下载PDF
Reduction mechanisms of pyrite cinder-carbon composite pellets 被引量:3
18
作者 Zheng-jian Liu Xiang-dong Xing +3 位作者 Jian-liang Zhang Ming-ming Cao Ke-xin Jiao Shan Ren 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第11期986-991,共6页
The non-isothermal reduction mechanisms of pyrite cinder-carbon composite pellets were studied at laboratory scale under argon (Ar) atmosphere. The composite pellets as well as the specimens of separate layers conta... The non-isothermal reduction mechanisms of pyrite cinder-carbon composite pellets were studied at laboratory scale under argon (Ar) atmosphere. The composite pellets as well as the specimens of separate layers containing pyrite cinder and coal were tested. The degree of reduction was measured by mass loss. The microstmctures of the reduced composite pellets were characterized by scanning electron mi- croscopy (SEM). It is found that the reduction processes of the composite pellets may be divided into four stages: reduction via CO and H2 from volatiles in coal at 673-973 K, reduction via H2 and C produced by cracking of hydrocarbon at 973-1123 K, direct reduction by carbon via gaseous intermediates at 1123-1323 K, and direct reduction by carbon at above 1323 K. Corresponding to the four stages, the apparent activation energies (E) for the reduction of the composite pellets are 86.26, 78.54, 72.01, and 203.65 kJ.mol-1, respectively. 展开更多
关键词 PYRITE ore pellets REDUCTION MICROSTRUCTURE activation energy
下载PDF
Mathematical model of the direct reduction of dust composite pellets containing zinc and iron 被引量:3
19
作者 Xiu-wei An Jing-song Wang +1 位作者 Xue-feng She Qing-guo Xue 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第7期627-635,共9页
Direct reduction of dust composite pellets containing zinc and iron was examined by simulating the conditions of actual production process of a rotary hearth furnace (RHF) in laboratory. A mathematical model was con... Direct reduction of dust composite pellets containing zinc and iron was examined by simulating the conditions of actual production process of a rotary hearth furnace (RHF) in laboratory. A mathematical model was constructed to study the reduction kinetics of iron oxides and ZnO in the dust composite pellets. It was validated by comparing the calculated values with experimental results. The effects of furnace temperature, pellet radius, and pellet porosity on the reduction were investigated by the model. It is shown that furnace temperature has obvious influence on both of the reduction of iron oxides and ZnO, but the influence of pellet radius and porosity is much smaller. Model calculations suggest that both of the reduction of iron oxides and ZnO are under mixed control with interface reactions and Boudouard reaction in the early stage, but only with interface reactions in the later stage. 展开更多
关键词 rotary hearth furnaces DUST ZINC ore pellets direct reduction process mathematical models kinetics
下载PDF
Mathematical simulation of direct reduction process in zinc-bearing pellets 被引量:2
20
作者 Ying Liu Fu-yong Su +3 位作者 Zhi Wen Zhi Li Hai-quan Yong Xiao-hong Feng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第11期1042-1049,共8页
A one-dimensional unsteady mathematical model was established to describe direct reduction in a composite pellet made of metallurgical dust. The model considered heat transfer, mass transfer, and chemical reactions in... A one-dimensional unsteady mathematical model was established to describe direct reduction in a composite pellet made of metallurgical dust. The model considered heat transfer, mass transfer, and chemical reactions including iron oxide reductions, zinc oxide reduction and carbon gasification, and it was numerically solved by the tridiagonal matrix algorithm (TDMA). In order to verify the model, an experiment was performed, in which the profiles of temperature and zinc removal rate were measured during the reduction process. Results calculated by the mathematical model were in fairly good agreement with experimental data. Finally, the effects of furnace temperature, pellet size, and carbon content were investigated by model calculations. It is found that the pellet temperature curve can be divided into four parts according to heating rate. Also, the zinc removal rate increases with the increase of furnace temperature and the decrease of pellet size, and carbon content in the pellet has little influence on the zinc removal rate. 展开更多
关键词 metallurgical dust ore pellets direct reduction process mathematical models
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部