This paper proposes an autonomous maneuver decision method using transfer learning pigeon-inspired optimization(TLPIO)for unmanned combat aerial vehicles(UCAVs)in dogfight engagements.Firstly,a nonlinear F-16 aircraft...This paper proposes an autonomous maneuver decision method using transfer learning pigeon-inspired optimization(TLPIO)for unmanned combat aerial vehicles(UCAVs)in dogfight engagements.Firstly,a nonlinear F-16 aircraft model and automatic control system are constructed by a MATLAB/Simulink platform.Secondly,a 3-degrees-of-freedom(3-DOF)aircraft model is used as a maneuvering command generator,and the expanded elemental maneuver library is designed,so that the aircraft state reachable set can be obtained.Then,the game matrix is composed with the air combat situation evaluation function calculated according to the angle and range threats.Finally,a key point is that the objective function to be optimized is designed using the game mixed strategy,and the optimal mixed strategy is obtained by TLPIO.Significantly,the proposed TLPIO does not initialize the population randomly,but adopts the transfer learning method based on Kullback-Leibler(KL)divergence to initialize the population,which improves the search accuracy of the optimization algorithm.Besides,the convergence and time complexity of TLPIO are discussed.Comparison analysis with other classical optimization algorithms highlights the advantage of TLPIO.In the simulation of air combat,three initial scenarios are set,namely,opposite,offensive and defensive conditions.The effectiveness performance of the proposed autonomous maneuver decision method is verified by simulation results.展开更多
This paper considers the formation control problem for a group of unmanned aerial vehicles( UAVs)employing consensus with different optimizers. A group of UAVs can never accomplish difficult tasks without formation be...This paper considers the formation control problem for a group of unmanned aerial vehicles( UAVs)employing consensus with different optimizers. A group of UAVs can never accomplish difficult tasks without formation because if disordered they do not work any better than a single vehicle,and a single vehicle is limited by its undeveloped intelligence and insufficient load. Among the many formation methods,consensus has attracted much attention because of its effectiveness and simplicity. However,at the beginning of convergence,overshoot and oscillation are universal because of the limitation of communication and a lack of forecasting,which are inborn shortcomings of consensus. It is natural to modify this method with lots of optimizers. In order to reduce overshoot and smooth trajectories, this paper first adopted particle swarm optimization( PSO), then pigeon-inspired optimization( PIO) to modify the consensus. PSO is a very popular optimizer,while PIO is a new method,both work but still retain disadvantages such as residual oscillation. As a result,it was necessary to modify PIO,and a pigeon-inspired optimization with a slow diving strategy( SD-PIO) is proposed. Convergence analysis was performed on the SD-PIO based on the Banach fixed-point theorem and conditions sufficient for stability were achieved.Finally,a series of comparative simulations were conducted to verify the feasibility and effectiveness of the proposed approach.展开更多
For the purpose of solving the engineering constrained discrete optimization problem, a novel discrete particle swarm optimization(DPSO) is proposed. The proposed novel DPSO is based on the idea of normal particle s...For the purpose of solving the engineering constrained discrete optimization problem, a novel discrete particle swarm optimization(DPSO) is proposed. The proposed novel DPSO is based on the idea of normal particle swarm optimization(PSO), but deals with the variables as discrete type, the discrete optimum solution is found through updating the location of discrete variable. To avoid long calculation time and improve the efficiency of algorithm, scheme of constraint level and huge value penalty are proposed to deal with the constraints, the stratagem of reproducing the new particles and best keeping model of particle are employed to increase the diversity of particles. The validity of the proposed DPSO is examined by benchmark numerical examples, the results show that the novel DPSO has great advantages over current algorithm. The optimum designs of the 100-1 500 mm bellows under 0.25 MPa are fulfilled by DPSO. Comparing the optimization results with the bellows in-service, optimization results by discrete penalty particle swarm optimization(DPPSO) and theory solution, the comparison result shows that the global discrete optima of bellows are obtained by proposed DPSO, and confirms that the proposed novel DPSO and schemes can be used to solve the engineering constrained discrete problem successfully.展开更多
In this paper, an approximate smoothing approach to the non-differentiable exact penalty function is proposed for the constrained optimization problem. A simple smoothed penalty algorithm is given, and its convergence...In this paper, an approximate smoothing approach to the non-differentiable exact penalty function is proposed for the constrained optimization problem. A simple smoothed penalty algorithm is given, and its convergence is discussed. A practical algorithm to compute approximate optimal solution is given as well as computational experiments to demonstrate its efficiency.展开更多
In this paper, a new augmented Lagrangian penalty function for constrained optimization problems is studied. The dual properties of the augmented Lagrangian objective penalty function for constrained optimization prob...In this paper, a new augmented Lagrangian penalty function for constrained optimization problems is studied. The dual properties of the augmented Lagrangian objective penalty function for constrained optimization problems are proved. Under some conditions, the saddle point of the augmented Lagrangian objective penalty function satisfies the first-order Karush-Kuhn-Tucker (KKT) condition. Especially, when the KKT condition holds for convex programming its saddle point exists. Based on the augmented Lagrangian objective penalty function, an algorithm is developed for finding a global solution to an inequality constrained optimization problem and its global convergence is also proved under some conditions.展开更多
By using the penalty function method with objective parameters, the paper presents an interactive algorithm to solve the inequality constrained multi-objective programming (MP). The MP is transformed into a single obj...By using the penalty function method with objective parameters, the paper presents an interactive algorithm to solve the inequality constrained multi-objective programming (MP). The MP is transformed into a single objective optimal problem (SOOP) with inequality constrains;and it is proved that, under some conditions, an optimal solution to SOOP is a Pareto efficient solution to MP. Then, an interactive algorithm of MP is designed accordingly. Numerical examples show that the algorithm can find a satisfactory solution to MP with objective weight value adjusted by decision maker.展开更多
We propose a new unified path to approximately smoothing the nonsmooth exact penalty function in this paper. Based on the new smooth penalty function, we give a penalty algorithm to solve the constrained optimization ...We propose a new unified path to approximately smoothing the nonsmooth exact penalty function in this paper. Based on the new smooth penalty function, we give a penalty algorithm to solve the constrained optimization problem, and discuss the convergence of the algorithm under mild conditions.展开更多
A novel technique for the optimal tuning of power system stabilizer (PSS) was proposed,by integrating the modified particle swarm optimization (MPSO) with the chaos (MPSOC).Firstly,a modification in the particle swarm...A novel technique for the optimal tuning of power system stabilizer (PSS) was proposed,by integrating the modified particle swarm optimization (MPSO) with the chaos (MPSOC).Firstly,a modification in the particle swarm optimization (PSO) was made by introducing passive congregation (PC).It helps each swarm member in receiving a multitude of information from other members and thus decreases the possibility of a failed attempt at detection or a meaningless search.Secondly,the MPSO and chaos were hybridized (MPSOC) to improve the global searching capability and prevent the premature convergence due to local minima.The robustness of the proposed PSS tuning technique was verified on a multi-machine power system under different operating conditions.The performance of the proposed MPSOC was compared to the MPSO,PSO and GA through eigenvalue analysis,nonlinear time-domain simulation and statistical tests.Eigenvalue analysis shows acceptable damping of the low-frequency modes and time domain simulations also show that the oscillations of synchronous machines can be rapidly damped for power systems with the proposed PSSs.The results show that the presented algorithm has a faster convergence rate with higher degree of accuracy than the GA,PSO and MPSO.展开更多
The trajectory optimization of an unpowered reentry vehicle via artificial emotion memory optimization(AEMO)is discussed.Firstly,reentry dynamics are established based on multiple constraints and parameterized control...The trajectory optimization of an unpowered reentry vehicle via artificial emotion memory optimization(AEMO)is discussed.Firstly,reentry dynamics are established based on multiple constraints and parameterized control variables with finite dimensions are designed.If the constraint is not satisfied,a distance measure and an adaptive penalty function are used to address this scenario.Secondly,AEMO is introduced to solve the trajectory optimization problem.Based on the theories of biology and cognition,the trial solutions based on emotional memory are established.Three search strategies are designed for realizing the random search of trial solutions and for avoiding becoming trapped in a local minimum.The states of the trial solutions are determined according to the rules of memory enhancement and forgetting.As the iterations proceed,the trial solutions with poor quality will gradually be forgotten.Therefore,the number of trial solutions is decreased,and the convergence of the algorithm is accelerated.Finally,a numerical simulation is conducted,and the results demonstrate that the path and terminal constraints are satisfied and the method can realize satisfactory performance.展开更多
An optimization mathematical model of the pile forces for piled breasting dolphins in the open sea under various loading conditions is presented. The optimum layout with the well distributed pile forces and the least ...An optimization mathematical model of the pile forces for piled breasting dolphins in the open sea under various loading conditions is presented. The optimum layout with the well distributed pile forces and the least number of piles is achieved by the multiplier penalty function method. Several engineering cases have been calculated and compared with the result of the conventional design method. It is shown that the number of piles can be reduced at least by 10%~20% and the piles' bearing state is improved greatly.展开更多
This paper considers dealing with path constraints in the framework of the improved control vector iteration (CVI) approach. Two available ways for enforcing equality path constraints are presented, which can be dir...This paper considers dealing with path constraints in the framework of the improved control vector iteration (CVI) approach. Two available ways for enforcing equality path constraints are presented, which can be directly incorporated into the improved CVI approach. Inequality path constraints are much more difficult to deal with, even for small scale problems, because the time intervals where the inequality path constraints are active are unknown in advance. To overcome the challenge, the ll penalty function and a novel smoothing technique are in-troduced, leading to a new effective approach. Moreover, on the basis of the relevant theorems, a numerical algo-rithm is proposed for nonlinear dynamic optimization problems with inequality path constraints. Results obtained from the classic batch reaCtor operation problem are in agreement with the literature reoorts, and the comoutational efficiency is also high.展开更多
This paper proposes a comprehensive design scheme for the extremum seeking control(ESC)of the unmanned aerial vehicle(UAV)close formation flight.The proposed design scheme combines a Newton-Raphson method with an exte...This paper proposes a comprehensive design scheme for the extremum seeking control(ESC)of the unmanned aerial vehicle(UAV)close formation flight.The proposed design scheme combines a Newton-Raphson method with an extended Kalman filter(EKF)to dynamically estimate the optimal position of the following UAV relative to the leading UAV.To reflect the wake vortex effects reliably,the drag coefficient induced by the wake vortex is considered as a performance function.Then,the performance function is parameterized by the first-order and second-order terms of its Taylor series expansion.Given the excellent performance of nonlinear estimation,the EKF is used to estimate the gradient and the Hessian matrix of the parameterized performance function.The output feedback of the proposed scheme is determined by iterative calculation of the Newton-Raphson method.Compared with the traditional ESC and the classic ESC,the proposed design scheme avoids the slow continuous time integration of the gradient.This allows a faster convergence of relative position extremum.Furthermore,the proposed method can provide a smoother command during the seeking process as the second-order term of the performance function is taken into account.The convergence analysis of the proposed design scheme is accomplished by showing that the output feedback is a supermartingale sequence.To improve estimation performance of the EKF,a improved pigeon-inspired optimization(IPIO)is proposed to automatically tune the noise covariance matrix.Monte Carlo simulations for a three-UAV close formation show that the proposed design scheme is robust to the initial position of the following UAV.展开更多
In this paper,convex optimization theory is introduced into the recognition of communication signals. The detailed content contains three parts. The first part gives a survey of basic concepts,main technology and reco...In this paper,convex optimization theory is introduced into the recognition of communication signals. The detailed content contains three parts. The first part gives a survey of basic concepts,main technology and recognition model of convex optimization theory. Special emphasis is placed on how to set up the new recognition model of communication signals with multisensor reports. The second part gives the solution method of the recognition model,which is called Logarithmic Penalty Barrier Function. The last part gives several numeric simulations,in contrast to D-S evidence inference method,this new method can also generate reasonable recognition results. Moreover,this new method can deal with the form of sensor reports which is more general than that allowed by the D-S evidence inference method,and it has much lower computation complexity than that of D-S evidence inference method. In addition,this new method has better recognition result,stronger anti-interference and robustness. Therefore,the convex optimization methods can be widely used in the recognition of communication signals.展开更多
Many factors influencing range of extended range guided munition (ERGM) are analyzed. The definition domain of the most important three parameters are ascertained by preparatory mathematical simulation, the optimize...Many factors influencing range of extended range guided munition (ERGM) are analyzed. The definition domain of the most important three parameters are ascertained by preparatory mathematical simulation, the optimized mathematical model of ERGM maximum range with boundary conditions is created, and parameter optimization based on genetic algorithm (GA) is adopted. In the GA design, three-point crossover is used and the best chromosome is kept so that the convergence speed becomes rapid. Simulation result shows that GA is feasible, the result is good and it can be easy to attain global optimization solution, especially when the objective function is not the convex one for independent variables and it is a multi-parameter problem.展开更多
Mobile adhoc networks have grown in prominence in recent years,and they are now utilized in a broader range of applications.The main challenges are related to routing techniques that are generally employed in them.Mob...Mobile adhoc networks have grown in prominence in recent years,and they are now utilized in a broader range of applications.The main challenges are related to routing techniques that are generally employed in them.Mobile Adhoc system management,on the other hand,requires further testing and improvements in terms of security.Traditional routing protocols,such as Adhoc On-Demand Distance Vector(AODV)and Dynamic Source Routing(DSR),employ the hop count to calculate the distance between two nodes.The main aim of this research work is to determine the optimum method for sending packets while also extending life time of the network.It is achieved by changing the residual energy of each network node.Also,in this paper,various algorithms for optimal routing based on parameters like energy,distance,mobility,and the pheromone value are proposed.Moreover,an approach based on a reward and penalty system is given in this paper to evaluate the efficiency of the proposed algorithms under the impact of parameters.The simulation results unveil that the reward penalty-based approach is quite effective for the selection of an optimal path for routing when the algorithms are implemented under the parameters of interest,which helps in achieving less packet drop and energy consumption of the nodes along with enhancing the network efficiency.展开更多
The scheduling process of cracking furnace feedstock is important in an ethylene plant. In this paper it is described as a constraint optimization problem. The constraints consist of the cycle of operation, maximum tu...The scheduling process of cracking furnace feedstock is important in an ethylene plant. In this paper it is described as a constraint optimization problem. The constraints consist of the cycle of operation, maximum tube metal temperature, process time of each feedstock, and flow rate. A modified group search optimizer is proposed to deal with the optimization problem. Double fitness values are defined for every group. First, the factor of penalty function should be changed adaptively by the ratio of feasible and general solutions. Second, the "excellent" infeasible solution should be retained to guide the search. Some benchmark functions are used to evaluate the new algorithm. Finally, the proposed algorithm is used to optimize the scheduling process of cracking furnace feedstock. And the optimizing result is obtained.展开更多
The penalty function method of continuum shape optimization and its sensitivity analysis technique are presented. A relatively simple integrated shape optimization system is developed and used to optimize the design o...The penalty function method of continuum shape optimization and its sensitivity analysis technique are presented. A relatively simple integrated shape optimization system is developed and used to optimize the design of the inner frame shape of a three-axis test table. The result shows that the method converges well, and the system is stable and reliable.展开更多
In recent years,the proportion of installed wind power in the three north regions where wind power bases are concentrated is increasing,but the peak regulation capacity of the power grid in the three north regions of ...In recent years,the proportion of installed wind power in the three north regions where wind power bases are concentrated is increasing,but the peak regulation capacity of the power grid in the three north regions of China is limited,resulting in insufficient local wind power consumption capacity.Therefore,this paper proposes a two-layer optimal scheduling strategy based on wind power consumption benefits to improve the power grid’s wind power consumption capacity.The objective of the uppermodel is tominimize the peak-valley difference of the systemload,which ismainly to optimize the system load by using the demand response resources,and to reduce the peak-valley difference of the system load to improve the peak load regulation capacity of the grid.The lower scheduling model is aimed at maximizing the system operation benefit,and the scheduling model is selected based on the rolling schedulingmethod.The load-side schedulingmodel needs to reallocate the absorbed wind power according to the response speed,absorption benefit,and curtailment penalty cost of the two DR dispatching resources.Finally,the measured data of a power grid are simulated by MATLAB,and the results show that:the proposed strategy can improve the power grid’s wind power consumption capacity and get a large wind power consumption benefit.展开更多
基金the Science and Technology Innovation 2030-Key Project of“New Generation Artificial Intelligence”(2018AAA0100803)the National Natural Science Foundation of China(U20B2071,91948204,T2121003,U1913602)。
文摘This paper proposes an autonomous maneuver decision method using transfer learning pigeon-inspired optimization(TLPIO)for unmanned combat aerial vehicles(UCAVs)in dogfight engagements.Firstly,a nonlinear F-16 aircraft model and automatic control system are constructed by a MATLAB/Simulink platform.Secondly,a 3-degrees-of-freedom(3-DOF)aircraft model is used as a maneuvering command generator,and the expanded elemental maneuver library is designed,so that the aircraft state reachable set can be obtained.Then,the game matrix is composed with the air combat situation evaluation function calculated according to the angle and range threats.Finally,a key point is that the objective function to be optimized is designed using the game mixed strategy,and the optimal mixed strategy is obtained by TLPIO.Significantly,the proposed TLPIO does not initialize the population randomly,but adopts the transfer learning method based on Kullback-Leibler(KL)divergence to initialize the population,which improves the search accuracy of the optimization algorithm.Besides,the convergence and time complexity of TLPIO are discussed.Comparison analysis with other classical optimization algorithms highlights the advantage of TLPIO.In the simulation of air combat,three initial scenarios are set,namely,opposite,offensive and defensive conditions.The effectiveness performance of the proposed autonomous maneuver decision method is verified by simulation results.
基金Natural Science Foundation of China under Grant(61333004)
文摘This paper considers the formation control problem for a group of unmanned aerial vehicles( UAVs)employing consensus with different optimizers. A group of UAVs can never accomplish difficult tasks without formation because if disordered they do not work any better than a single vehicle,and a single vehicle is limited by its undeveloped intelligence and insufficient load. Among the many formation methods,consensus has attracted much attention because of its effectiveness and simplicity. However,at the beginning of convergence,overshoot and oscillation are universal because of the limitation of communication and a lack of forecasting,which are inborn shortcomings of consensus. It is natural to modify this method with lots of optimizers. In order to reduce overshoot and smooth trajectories, this paper first adopted particle swarm optimization( PSO), then pigeon-inspired optimization( PIO) to modify the consensus. PSO is a very popular optimizer,while PIO is a new method,both work but still retain disadvantages such as residual oscillation. As a result,it was necessary to modify PIO,and a pigeon-inspired optimization with a slow diving strategy( SD-PIO) is proposed. Convergence analysis was performed on the SD-PIO based on the Banach fixed-point theorem and conditions sufficient for stability were achieved.Finally,a series of comparative simulations were conducted to verify the feasibility and effectiveness of the proposed approach.
基金supported by National Hi-tech Research and Development Program of China (Grant No. 2006aa042439)
文摘For the purpose of solving the engineering constrained discrete optimization problem, a novel discrete particle swarm optimization(DPSO) is proposed. The proposed novel DPSO is based on the idea of normal particle swarm optimization(PSO), but deals with the variables as discrete type, the discrete optimum solution is found through updating the location of discrete variable. To avoid long calculation time and improve the efficiency of algorithm, scheme of constraint level and huge value penalty are proposed to deal with the constraints, the stratagem of reproducing the new particles and best keeping model of particle are employed to increase the diversity of particles. The validity of the proposed DPSO is examined by benchmark numerical examples, the results show that the novel DPSO has great advantages over current algorithm. The optimum designs of the 100-1 500 mm bellows under 0.25 MPa are fulfilled by DPSO. Comparing the optimization results with the bellows in-service, optimization results by discrete penalty particle swarm optimization(DPPSO) and theory solution, the comparison result shows that the global discrete optima of bellows are obtained by proposed DPSO, and confirms that the proposed novel DPSO and schemes can be used to solve the engineering constrained discrete problem successfully.
文摘In this paper, an approximate smoothing approach to the non-differentiable exact penalty function is proposed for the constrained optimization problem. A simple smoothed penalty algorithm is given, and its convergence is discussed. A practical algorithm to compute approximate optimal solution is given as well as computational experiments to demonstrate its efficiency.
文摘In this paper, a new augmented Lagrangian penalty function for constrained optimization problems is studied. The dual properties of the augmented Lagrangian objective penalty function for constrained optimization problems are proved. Under some conditions, the saddle point of the augmented Lagrangian objective penalty function satisfies the first-order Karush-Kuhn-Tucker (KKT) condition. Especially, when the KKT condition holds for convex programming its saddle point exists. Based on the augmented Lagrangian objective penalty function, an algorithm is developed for finding a global solution to an inequality constrained optimization problem and its global convergence is also proved under some conditions.
文摘By using the penalty function method with objective parameters, the paper presents an interactive algorithm to solve the inequality constrained multi-objective programming (MP). The MP is transformed into a single objective optimal problem (SOOP) with inequality constrains;and it is proved that, under some conditions, an optimal solution to SOOP is a Pareto efficient solution to MP. Then, an interactive algorithm of MP is designed accordingly. Numerical examples show that the algorithm can find a satisfactory solution to MP with objective weight value adjusted by decision maker.
文摘We propose a new unified path to approximately smoothing the nonsmooth exact penalty function in this paper. Based on the new smooth penalty function, we give a penalty algorithm to solve the constrained optimization problem, and discuss the convergence of the algorithm under mild conditions.
文摘A novel technique for the optimal tuning of power system stabilizer (PSS) was proposed,by integrating the modified particle swarm optimization (MPSO) with the chaos (MPSOC).Firstly,a modification in the particle swarm optimization (PSO) was made by introducing passive congregation (PC).It helps each swarm member in receiving a multitude of information from other members and thus decreases the possibility of a failed attempt at detection or a meaningless search.Secondly,the MPSO and chaos were hybridized (MPSOC) to improve the global searching capability and prevent the premature convergence due to local minima.The robustness of the proposed PSS tuning technique was verified on a multi-machine power system under different operating conditions.The performance of the proposed MPSOC was compared to the MPSO,PSO and GA through eigenvalue analysis,nonlinear time-domain simulation and statistical tests.Eigenvalue analysis shows acceptable damping of the low-frequency modes and time domain simulations also show that the oscillations of synchronous machines can be rapidly damped for power systems with the proposed PSSs.The results show that the presented algorithm has a faster convergence rate with higher degree of accuracy than the GA,PSO and MPSO.
基金supported by the Defense Science and Technology Key Laboratory Fund of Luoyang Electro-optical Equipment Institute,Aviation Industry Corporation of China(6142504200108).
文摘The trajectory optimization of an unpowered reentry vehicle via artificial emotion memory optimization(AEMO)is discussed.Firstly,reentry dynamics are established based on multiple constraints and parameterized control variables with finite dimensions are designed.If the constraint is not satisfied,a distance measure and an adaptive penalty function are used to address this scenario.Secondly,AEMO is introduced to solve the trajectory optimization problem.Based on the theories of biology and cognition,the trial solutions based on emotional memory are established.Three search strategies are designed for realizing the random search of trial solutions and for avoiding becoming trapped in a local minimum.The states of the trial solutions are determined according to the rules of memory enhancement and forgetting.As the iterations proceed,the trial solutions with poor quality will gradually be forgotten.Therefore,the number of trial solutions is decreased,and the convergence of the algorithm is accelerated.Finally,a numerical simulation is conducted,and the results demonstrate that the path and terminal constraints are satisfied and the method can realize satisfactory performance.
基金TheworkwassupportedbytheNationalFoundationofHighPerformanceComputation (No .9810 0 5 )
文摘An optimization mathematical model of the pile forces for piled breasting dolphins in the open sea under various loading conditions is presented. The optimum layout with the well distributed pile forces and the least number of piles is achieved by the multiplier penalty function method. Several engineering cases have been calculated and compared with the result of the conventional design method. It is shown that the number of piles can be reduced at least by 10%~20% and the piles' bearing state is improved greatly.
基金Supported by the National Natural Science Foundation of China(U1162130)the National High Technology Research and Development Program of China(2006AA05Z226)Outstanding Youth Science Foundation of Zhejiang Province(R4100133)
文摘This paper considers dealing with path constraints in the framework of the improved control vector iteration (CVI) approach. Two available ways for enforcing equality path constraints are presented, which can be directly incorporated into the improved CVI approach. Inequality path constraints are much more difficult to deal with, even for small scale problems, because the time intervals where the inequality path constraints are active are unknown in advance. To overcome the challenge, the ll penalty function and a novel smoothing technique are in-troduced, leading to a new effective approach. Moreover, on the basis of the relevant theorems, a numerical algo-rithm is proposed for nonlinear dynamic optimization problems with inequality path constraints. Results obtained from the classic batch reaCtor operation problem are in agreement with the literature reoorts, and the comoutational efficiency is also high.
基金supported by the National Natural Science Foundation of China(Grant Nos.91948204,U20B2071,T2121003 and U1913602)Open Fund/Postdoctoral Fund of the Laboratory of Cognition and Decision Intelligence for Complex Systems,Institute of Automation,Chinese Academy of Sciences(Grant No.CASIA-KFKT-08)。
文摘This paper proposes a comprehensive design scheme for the extremum seeking control(ESC)of the unmanned aerial vehicle(UAV)close formation flight.The proposed design scheme combines a Newton-Raphson method with an extended Kalman filter(EKF)to dynamically estimate the optimal position of the following UAV relative to the leading UAV.To reflect the wake vortex effects reliably,the drag coefficient induced by the wake vortex is considered as a performance function.Then,the performance function is parameterized by the first-order and second-order terms of its Taylor series expansion.Given the excellent performance of nonlinear estimation,the EKF is used to estimate the gradient and the Hessian matrix of the parameterized performance function.The output feedback of the proposed scheme is determined by iterative calculation of the Newton-Raphson method.Compared with the traditional ESC and the classic ESC,the proposed design scheme avoids the slow continuous time integration of the gradient.This allows a faster convergence of relative position extremum.Furthermore,the proposed method can provide a smoother command during the seeking process as the second-order term of the performance function is taken into account.The convergence analysis of the proposed design scheme is accomplished by showing that the output feedback is a supermartingale sequence.To improve estimation performance of the EKF,a improved pigeon-inspired optimization(IPIO)is proposed to automatically tune the noise covariance matrix.Monte Carlo simulations for a three-UAV close formation show that the proposed design scheme is robust to the initial position of the following UAV.
基金Sponsored by the Nation Nature Science Foundation of China(Grant No.61301095,61201237)the Nature Science Foundation of Heilongjiang Province of China(Grant No.QC2012C069)the Fundamental Research Funds for the Central Universities(Grant No.HEUCFZ1129,HEUCF130810,HEUCF130817)
文摘In this paper,convex optimization theory is introduced into the recognition of communication signals. The detailed content contains three parts. The first part gives a survey of basic concepts,main technology and recognition model of convex optimization theory. Special emphasis is placed on how to set up the new recognition model of communication signals with multisensor reports. The second part gives the solution method of the recognition model,which is called Logarithmic Penalty Barrier Function. The last part gives several numeric simulations,in contrast to D-S evidence inference method,this new method can also generate reasonable recognition results. Moreover,this new method can deal with the form of sensor reports which is more general than that allowed by the D-S evidence inference method,and it has much lower computation complexity than that of D-S evidence inference method. In addition,this new method has better recognition result,stronger anti-interference and robustness. Therefore,the convex optimization methods can be widely used in the recognition of communication signals.
文摘Many factors influencing range of extended range guided munition (ERGM) are analyzed. The definition domain of the most important three parameters are ascertained by preparatory mathematical simulation, the optimized mathematical model of ERGM maximum range with boundary conditions is created, and parameter optimization based on genetic algorithm (GA) is adopted. In the GA design, three-point crossover is used and the best chromosome is kept so that the convergence speed becomes rapid. Simulation result shows that GA is feasible, the result is good and it can be easy to attain global optimization solution, especially when the objective function is not the convex one for independent variables and it is a multi-parameter problem.
文摘Mobile adhoc networks have grown in prominence in recent years,and they are now utilized in a broader range of applications.The main challenges are related to routing techniques that are generally employed in them.Mobile Adhoc system management,on the other hand,requires further testing and improvements in terms of security.Traditional routing protocols,such as Adhoc On-Demand Distance Vector(AODV)and Dynamic Source Routing(DSR),employ the hop count to calculate the distance between two nodes.The main aim of this research work is to determine the optimum method for sending packets while also extending life time of the network.It is achieved by changing the residual energy of each network node.Also,in this paper,various algorithms for optimal routing based on parameters like energy,distance,mobility,and the pheromone value are proposed.Moreover,an approach based on a reward and penalty system is given in this paper to evaluate the efficiency of the proposed algorithms under the impact of parameters.The simulation results unveil that the reward penalty-based approach is quite effective for the selection of an optimal path for routing when the algorithms are implemented under the parameters of interest,which helps in achieving less packet drop and energy consumption of the nodes along with enhancing the network efficiency.
基金Supported by the Major State Basic Research Development Program of China(2012CB720500)the National Natural Science Foundation of China(Key Program:U1162202),the National Natural Science Foundation of China(61174118)+2 种基金the National High-Tech Research and Development Program of China(2012AA040307)Shanghai Key Technologies R&D program(12dz1125100)Shanghai Leading Academic Discipline Project(B504)
文摘The scheduling process of cracking furnace feedstock is important in an ethylene plant. In this paper it is described as a constraint optimization problem. The constraints consist of the cycle of operation, maximum tube metal temperature, process time of each feedstock, and flow rate. A modified group search optimizer is proposed to deal with the optimization problem. Double fitness values are defined for every group. First, the factor of penalty function should be changed adaptively by the ratio of feasible and general solutions. Second, the "excellent" infeasible solution should be retained to guide the search. Some benchmark functions are used to evaluate the new algorithm. Finally, the proposed algorithm is used to optimize the scheduling process of cracking furnace feedstock. And the optimizing result is obtained.
文摘The penalty function method of continuum shape optimization and its sensitivity analysis technique are presented. A relatively simple integrated shape optimization system is developed and used to optimize the design of the inner frame shape of a three-axis test table. The result shows that the method converges well, and the system is stable and reliable.
基金The study was supported by the State Grid Henan Economic Research Institute Regional Autonomy Project.
文摘In recent years,the proportion of installed wind power in the three north regions where wind power bases are concentrated is increasing,but the peak regulation capacity of the power grid in the three north regions of China is limited,resulting in insufficient local wind power consumption capacity.Therefore,this paper proposes a two-layer optimal scheduling strategy based on wind power consumption benefits to improve the power grid’s wind power consumption capacity.The objective of the uppermodel is tominimize the peak-valley difference of the systemload,which ismainly to optimize the system load by using the demand response resources,and to reduce the peak-valley difference of the system load to improve the peak load regulation capacity of the grid.The lower scheduling model is aimed at maximizing the system operation benefit,and the scheduling model is selected based on the rolling schedulingmethod.The load-side schedulingmodel needs to reallocate the absorbed wind power according to the response speed,absorption benefit,and curtailment penalty cost of the two DR dispatching resources.Finally,the measured data of a power grid are simulated by MATLAB,and the results show that:the proposed strategy can improve the power grid’s wind power consumption capacity and get a large wind power consumption benefit.