In this paper, a new finite element method for the flow analysis of the viscous incompressible power-law fluid is proposed by the use of penalty-hybrid/mixed finite element formulation and by the introduction of an al...In this paper, a new finite element method for the flow analysis of the viscous incompressible power-law fluid is proposed by the use of penalty-hybrid/mixed finite element formulation and by the introduction of an alternative perturbation, which is weighted by viscosity, of the continuity equation. A numerical example is presented to exhibit the efficiency of the method.展开更多
We propose and analyze a posteriori energy-norm error estimates for weighted interior penalty discontinuous Galerkin approximations of advection-diffusion-reaction equations with heterogeneous and anisotropic diffusio...We propose and analyze a posteriori energy-norm error estimates for weighted interior penalty discontinuous Galerkin approximations of advection-diffusion-reaction equations with heterogeneous and anisotropic diffusion. The weights, which play a key role in the analysis, depend on the diffusion tensor and are used to formulate the consistency terms in the discontinuous Galerkin method. The error upper bounds, in which all the constants are specified, consist of three terms: a residual estimator which depends only on the elementwise fluctuation of the discrete solution residual, a diffusive flux estimator where the weights used in the method enter explicitly, and a non-conforming estimator which is nonzero because of the use of discontinuous finite element spaces. The three estimators can be bounded locally by the approximation error. A particular attention is given to the dependency on problem parameters of the constants in the local lower error bounds. For moderate advection, it is shown that full robustness with respect to diffusion heterogeneities is achieved owing to the specific design of the weights in the discontinuous Galerkin method, while diffusion anisotropies remain purely local and impact the constants through the square root of the condition number of the diffusion tensor. For dominant advection, it is shown, in the spirit of previous work by Verfiirth on continuous finite elements, that the local lower error bounds can be written with constants involving a cut-off for the ratio of local mesh size to the reciprocal of the square root of the lowest local eignevalue of the diffusion tensor.展开更多
Weighted interior penalty discontinuous Galerkin method is developed to solve the two-dimensional non-equilibrium radiation diffusion equation on unstructured mesh.There are three weights including the arithmetic,the ...Weighted interior penalty discontinuous Galerkin method is developed to solve the two-dimensional non-equilibrium radiation diffusion equation on unstructured mesh.There are three weights including the arithmetic,the harmonic,and the geometric weight in the weighted discontinuous Galerkin scheme.For the time discretization,we treat the nonlinear diffusion coefficients explicitly,and apply the semiimplicit integration factormethod to the nonlinear ordinary differential equations arising from discontinuous Galerkin spatial discretization.The semi-implicit integration factor method can not only avoid severe timestep limits,but also takes advantage of the local property of DG methods by which small sized nonlinear algebraic systems are solved element by element with the exact Newton iteration method.Numerical results are presented to demonstrate the validity of discontinuous Galerkin method for high nonlinear and tightly coupled radiation diffusion equation.展开更多
In[J.Comput.Phys.192(1),pp.325-354(2003)],we have developed a multidomain spectral method with stable and conservative penalty interface conditions for the numerical simulation of supersonic reactive recessed cavity f...In[J.Comput.Phys.192(1),pp.325-354(2003)],we have developed a multidomain spectral method with stable and conservative penalty interface conditions for the numerical simulation of supersonic reactive recessed cavity flows with homogeneous grid.In this work,the previously developed methodology is generalized to inhomogeneous grid to simulate the two dimensional supersonic injector-cavity system.Non-physical modes in the solution generated at the domain interfaces due to the spatial grid inhomogeneity are minimized using the new weighted multi-domain spectral penalty method.The proposed method yields accurate and stable solutions of the injector-cavity system which agree well with experiments qualitatively.Through the direct numerical simulation of the injector-cavity system using the weighted method,the geometric effect of the cavity wall on pressure fluctuations is investigated.It is shown that the recessed slanted cavity attenuates pressure fluctuations inside cavity enabling the cavity to act potentially as a stable flameholder for scramjet engine.展开更多
Under the dual effects of aerodynamic heating and high-power electronic equipment heating,the heat sink and power demand of advanced high-speed aircraft have been exponentially rising,which seriously restricts the air...Under the dual effects of aerodynamic heating and high-power electronic equipment heating,the heat sink and power demand of advanced high-speed aircraft have been exponentially rising,which seriously restricts the aircraft performance.To improve system cooling and power supply performance and reduce engine performance loss,a power and thermal management system(PTMS)with high performance,low energy consumption,and light weight urgently needs to be developed.In this paper,three modes of a potential PTMS with different heat sinks and bleed air sources are further discussed to analyze and compare the optimal matching with the flight mission at Mach 1-4.4.The equivalent mass method is used to uniformly assess the costs of the fixed weight,bleed,resistance,etc.as a function of the fuel weight penalty,which is chosen as the optimization objective.The optimization variables consist of the compressor outlet temperature,cooling air flow rate,and fan duct heat exchanger structure size.The results show that the intermediate-stage bleed air and fan duct heat sink are more suitable when the Mach number is less than 2,but the ram air bleed is highly suitable for flight missions at a high Mach number.Especially at Mach 3.4-4.4,the ram air bleed mode can respond to the cooling and power demands with a simple architecture.展开更多
文摘In this paper, a new finite element method for the flow analysis of the viscous incompressible power-law fluid is proposed by the use of penalty-hybrid/mixed finite element formulation and by the introduction of an alternative perturbation, which is weighted by viscosity, of the continuity equation. A numerical example is presented to exhibit the efficiency of the method.
文摘We propose and analyze a posteriori energy-norm error estimates for weighted interior penalty discontinuous Galerkin approximations of advection-diffusion-reaction equations with heterogeneous and anisotropic diffusion. The weights, which play a key role in the analysis, depend on the diffusion tensor and are used to formulate the consistency terms in the discontinuous Galerkin method. The error upper bounds, in which all the constants are specified, consist of three terms: a residual estimator which depends only on the elementwise fluctuation of the discrete solution residual, a diffusive flux estimator where the weights used in the method enter explicitly, and a non-conforming estimator which is nonzero because of the use of discontinuous finite element spaces. The three estimators can be bounded locally by the approximation error. A particular attention is given to the dependency on problem parameters of the constants in the local lower error bounds. For moderate advection, it is shown that full robustness with respect to diffusion heterogeneities is achieved owing to the specific design of the weights in the discontinuous Galerkin method, while diffusion anisotropies remain purely local and impact the constants through the square root of the condition number of the diffusion tensor. For dominant advection, it is shown, in the spirit of previous work by Verfiirth on continuous finite elements, that the local lower error bounds can be written with constants involving a cut-off for the ratio of local mesh size to the reciprocal of the square root of the lowest local eignevalue of the diffusion tensor.
基金the National Nature Science Foundation of China(11171038)R.Zhang’s work was also supported by Brazilian Young Talent Attraction Program via National Council for Scientific and Technological Development(CNPq).J.Zhu and A.Loula’s works were partially supported by CNPq.X.Cui’s work was partially supported by the National Natural Science Foundation of China(11271054)+1 种基金the Science Foundation of CAEP(2010A0202010,2012B0202026)the Defense Industrial Technology Development Program(B1520110011).
文摘Weighted interior penalty discontinuous Galerkin method is developed to solve the two-dimensional non-equilibrium radiation diffusion equation on unstructured mesh.There are three weights including the arithmetic,the harmonic,and the geometric weight in the weighted discontinuous Galerkin scheme.For the time discretization,we treat the nonlinear diffusion coefficients explicitly,and apply the semiimplicit integration factormethod to the nonlinear ordinary differential equations arising from discontinuous Galerkin spatial discretization.The semi-implicit integration factor method can not only avoid severe timestep limits,but also takes advantage of the local property of DG methods by which small sized nonlinear algebraic systems are solved element by element with the exact Newton iteration method.Numerical results are presented to demonstrate the validity of discontinuous Galerkin method for high nonlinear and tightly coupled radiation diffusion equation.
基金The first(WSD)and second authors(DG)gratefully acknowledge the support of this work by the AFOSR under contract number FA9550-08-1-0200 and DOE under contract number DE-FG02-98ER25346The third author(JHJ)has been supported by the NSF under Grant No.DMS-0608844The authors also thank the anonymous referees for their careful reading and helpful suggestions。
文摘In[J.Comput.Phys.192(1),pp.325-354(2003)],we have developed a multidomain spectral method with stable and conservative penalty interface conditions for the numerical simulation of supersonic reactive recessed cavity flows with homogeneous grid.In this work,the previously developed methodology is generalized to inhomogeneous grid to simulate the two dimensional supersonic injector-cavity system.Non-physical modes in the solution generated at the domain interfaces due to the spatial grid inhomogeneity are minimized using the new weighted multi-domain spectral penalty method.The proposed method yields accurate and stable solutions of the injector-cavity system which agree well with experiments qualitatively.Through the direct numerical simulation of the injector-cavity system using the weighted method,the geometric effect of the cavity wall on pressure fluctuations is investigated.It is shown that the recessed slanted cavity attenuates pressure fluctuations inside cavity enabling the cavity to act potentially as a stable flameholder for scramjet engine.
文摘Under the dual effects of aerodynamic heating and high-power electronic equipment heating,the heat sink and power demand of advanced high-speed aircraft have been exponentially rising,which seriously restricts the aircraft performance.To improve system cooling and power supply performance and reduce engine performance loss,a power and thermal management system(PTMS)with high performance,low energy consumption,and light weight urgently needs to be developed.In this paper,three modes of a potential PTMS with different heat sinks and bleed air sources are further discussed to analyze and compare the optimal matching with the flight mission at Mach 1-4.4.The equivalent mass method is used to uniformly assess the costs of the fixed weight,bleed,resistance,etc.as a function of the fuel weight penalty,which is chosen as the optimization objective.The optimization variables consist of the compressor outlet temperature,cooling air flow rate,and fan duct heat exchanger structure size.The results show that the intermediate-stage bleed air and fan duct heat sink are more suitable when the Mach number is less than 2,but the ram air bleed is highly suitable for flight missions at a high Mach number.Especially at Mach 3.4-4.4,the ram air bleed mode can respond to the cooling and power demands with a simple architecture.