There lies a close relationship between the seabed destruction and the distribution of pore water pressure under the action of breaking wave. The experiments were carried out in a wave flume with a 1:30 sloping sandy...There lies a close relationship between the seabed destruction and the distribution of pore water pressure under the action of breaking wave. The experiments were carried out in a wave flume with a 1:30 sloping sandy seabed to study regular breaking wave induced pore water pressure. A wide range of measurements from the regular wave runs were reported, including time series of wave heights, pore pressures. The video records were analysed to measure the time development of the seabed form and the characteristics of the orbital motion of the sand in the wave breaking region. The pore water pressure in the breaker zone showed the time variation depending on the wave phases including wave breaking and bore propagation. The time-averaged pore water pressure was higher near the seabed surface. The peak values of pore water pressure increase significantly at the breaking point. The direction of pore water pressure difference forces in the breaker zone is of fundamental importance for a correct description of the sediment dynamics. The upwards- directed pressure differences may increase sand transport by reducing the effective weight of the sediment, thereby increasing the bed form evolution. The seabed configuration changed greatly at the wave breaking zone and a sand bar was generated remarkably. The amplitude of the pore water pressure changed with the seabed surface. The results are to improve the understanding of sand transport mechanisms and seabed responses due to breaking regular waves over a sloping sandy bed.展开更多
A small scale field experiment (SSFE) was performed on vertical breakwaters in the surf zone. The following are some of the findings. Wind seas may yield breaking wave pressure notwithstanding some large deepwater wav...A small scale field experiment (SSFE) was performed on vertical breakwaters in the surf zone. The following are some of the findings. Wind seas may yield breaking wave pressure notwithstanding some large deepwater wave steepness, and small elevation of the wall above the mean water level. Caisson breakwaters can withstand some exceptionally high impulsive force peaks (even twice the weight in still water);whereas, with the same sea state and weight, a breakwater composed of layers of solid concrete blocks is destroyed.展开更多
In this paper, two novel numerical computation methods are introduced which have been recently developed at Research Institute for Applied Mechanics ( R/AM ), Kyushu University, for strongly nonlinear wave-body inte...In this paper, two novel numerical computation methods are introduced which have been recently developed at Research Institute for Applied Mechanics ( R/AM ), Kyushu University, for strongly nonlinear wave-body interaction problems, such as ship motions in rough seas and resulting green-water impact on deck. The first method is the CIP-based Cartesian grid method, in which the free surface flow is treated as a multi-phase flow which is solved using a Cartesian grid. The second method is the MPS method, which is a so-called particle method and hence no grid is used. The features and calculation procedures of these numerical methods are described. One validation computation against a newly conducted experiment on a dam break problem, which is also described in this paper, is presented.展开更多
When waves propagate from deep water to shallow water, wave heights and steepness increase and then waves roll back and break. This phenomenon is called surf. Currently, the present statistical calculation model of su...When waves propagate from deep water to shallow water, wave heights and steepness increase and then waves roll back and break. This phenomenon is called surf. Currently, the present statistical calculation model of surf was derived mainly from the wave energy conservation equation and the linear wave dispersion relation, but it cannot reflect accurately the process which is a rapid increasing in wave height near the broken point. So, the concept of a surf breaking critical zone is presented. And the nearshore is divided as deep water zone, shallow water zone, surf breaking critical zone and after breaking zone. Besides, the calculation formula for the height of the surf breaking critical zone has founded based on flume experiments, thereby a new statistical calculation model on the surf has been established. Using the new model, the calculation error of wave height maximum is reduced from 17.62% to 6.43%.展开更多
In the course of the propagation of waves from the offshore to the nearshore zone, the wave may break due to the shoaling effect. Strong impact forces are observed when the breaking wave acts on the pier of the bridge...In the course of the propagation of waves from the offshore to the nearshore zone, the wave may break due to the shoaling effect. Strong impact forces are observed when the breaking wave acts on the pier of the bridge. This impact force might not only change the dynamic load pattern on the pier but also cause strong structural vibration, which may threaten the driving and structural safety of the bridge. Many studies have been carried out to study the issues in the aspect of wave flume experiment, numerical simulation, calculation of breaking wave force, and random vibration response of the structure. Considering the studies of breaking wave load on bridge piers are lack of systematic summaries, this paper presents a comprehensive and up-to-date literature review of breaking wave research and practice related to bridges. Firstly, a brief introduction is given, which includes recent cases of bridge failures caused by breaking waves. Then, both scientific and technical studies are reviewed, categorized into four aspects: experimental study, numerical simulation, analytical calculation of breaking wave force, and the structural response under breaking wave. Finally, Discussion is provided on four emerging ideas to investigate breaking wave forces on the pier from both science and engineering perspectives.展开更多
The evolution of the nonlinear wave groups in deep water is investigated through laboratory measurements and numerical analysis.Laboratory experiments are conducted in deep-water wave tank,focusing on the characterist...The evolution of the nonlinear wave groups in deep water is investigated through laboratory measurements and numerical analysis.Laboratory experiments are conducted in deep-water wave tank,focusing on the characteristics of breaking waves arising from the evolved wave train.Some quantitative results are obtained for the significant breaking wave train,including the surface elevation time series,the local geometry,and the energy dissipation.A nonlinear model for the evolution of the wave groups in deep water is developed by adding eddy viscosity dissipation terms in the High Level Irrotational Green-Naghdi(HLIGN)equations.The results of the simulation are compared with the laboratory measurements,and good agreement is observed for the evolved wave train.展开更多
According to the stream theory, this paper proposes a mathematical model of the dielectric recovery characteristic based on the two-temperature ionization equilibrium equation. Taking the dynamic variation of charged ...According to the stream theory, this paper proposes a mathematical model of the dielectric recovery characteristic based on the two-temperature ionization equilibrium equation. Taking the dynamic variation of charged particle's ionization and attachment into account, this model can be used in collaboration with the Coulomb collision model, which gives the relationship of the heavy particle temperature and electron temperature to calculate the electron density and temperature under different pressure and electric field conditions, so as to deliver the breakdown electric field strength under different pressure conditions. Meanwhile an experiment loop of the circuit breaker has been built to measure the breakdown voltage. It is shown that calculated results are in conformity with experiment results on the whole while results based on the stream criterion are larger than experiment results. This indicates that the mathematical model proposed here is more accurate for calculating the dielectric recovery characteristic, it is derived from the stream model with some improvement and refinement and has great significance for increasing the simulation accuracy of circuit breaker's interruption characteristic.展开更多
The thick Cenozoic unconsolidated aquifer is deposited under Sunan syncline core in Huaibei coalfield, the water yield property of unconsolidated bottom aquifer is strong and water pressure is high in some areas (up t...The thick Cenozoic unconsolidated aquifer is deposited under Sunan syncline core in Huaibei coalfield, the water yield property of unconsolidated bottom aquifer is strong and water pressure is high in some areas (up to 4 MPa in some areas). Water inrush accident often occurs during mining under unconsolidated aquifer, the biggest characteristic is abnormal mine pressure and support break-off during water inrush accident comparing with normal condition. In order to study mechanism of?support break-off and water inrush during mining under the high confined thick unconsolidated aquifer, a simulation of similar material was designed. The experimental results indicated that, under normal condition, the compound breakage sequence of water-resisting key strata between coal seam and high confined thick unconsolidated aquifer is from top to bottom and the basic reason of synchronous fracture is the load of bottom key strata increased suddenly when the breakage of top key strata happened. Because of high confined thick unconsolidated aquifer, surface acts on the bottom key strata soil layer in the form of uniformly distributed load, which is the load-transfer mechanism of confined thick unconsolidated aquifer. Once the overlying key strata compound breaks, the height of unstable strata will reach far more than 30 meters and exceed support capability of current fully-mechanized mining supporter, which leads to support break-off accident during mining process under confined unconsolidated aquifer.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 50909009,50979008,and41176072)the Open Foundation of the State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology (Grant No. LP1004)
文摘There lies a close relationship between the seabed destruction and the distribution of pore water pressure under the action of breaking wave. The experiments were carried out in a wave flume with a 1:30 sloping sandy seabed to study regular breaking wave induced pore water pressure. A wide range of measurements from the regular wave runs were reported, including time series of wave heights, pore pressures. The video records were analysed to measure the time development of the seabed form and the characteristics of the orbital motion of the sand in the wave breaking region. The pore water pressure in the breaker zone showed the time variation depending on the wave phases including wave breaking and bore propagation. The time-averaged pore water pressure was higher near the seabed surface. The peak values of pore water pressure increase significantly at the breaking point. The direction of pore water pressure difference forces in the breaker zone is of fundamental importance for a correct description of the sediment dynamics. The upwards- directed pressure differences may increase sand transport by reducing the effective weight of the sediment, thereby increasing the bed form evolution. The seabed configuration changed greatly at the wave breaking zone and a sand bar was generated remarkably. The amplitude of the pore water pressure changed with the seabed surface. The results are to improve the understanding of sand transport mechanisms and seabed responses due to breaking regular waves over a sloping sandy bed.
文摘A small scale field experiment (SSFE) was performed on vertical breakwaters in the surf zone. The following are some of the findings. Wind seas may yield breaking wave pressure notwithstanding some large deepwater wave steepness, and small elevation of the wall above the mean water level. Caisson breakwaters can withstand some exceptionally high impulsive force peaks (even twice the weight in still water);whereas, with the same sea state and weight, a breakwater composed of layers of solid concrete blocks is destroyed.
文摘In this paper, two novel numerical computation methods are introduced which have been recently developed at Research Institute for Applied Mechanics ( R/AM ), Kyushu University, for strongly nonlinear wave-body interaction problems, such as ship motions in rough seas and resulting green-water impact on deck. The first method is the CIP-based Cartesian grid method, in which the free surface flow is treated as a multi-phase flow which is solved using a Cartesian grid. The second method is the MPS method, which is a so-called particle method and hence no grid is used. The features and calculation procedures of these numerical methods are described. One validation computation against a newly conducted experiment on a dam break problem, which is also described in this paper, is presented.
基金The National Natural Science Foundation of China under contract Nos 41076048 and 40906044
文摘When waves propagate from deep water to shallow water, wave heights and steepness increase and then waves roll back and break. This phenomenon is called surf. Currently, the present statistical calculation model of surf was derived mainly from the wave energy conservation equation and the linear wave dispersion relation, but it cannot reflect accurately the process which is a rapid increasing in wave height near the broken point. So, the concept of a surf breaking critical zone is presented. And the nearshore is divided as deep water zone, shallow water zone, surf breaking critical zone and after breaking zone. Besides, the calculation formula for the height of the surf breaking critical zone has founded based on flume experiments, thereby a new statistical calculation model on the surf has been established. Using the new model, the calculation error of wave height maximum is reduced from 17.62% to 6.43%.
基金financial support from the National Natural Science Foundation of China(No.51978578)。
文摘In the course of the propagation of waves from the offshore to the nearshore zone, the wave may break due to the shoaling effect. Strong impact forces are observed when the breaking wave acts on the pier of the bridge. This impact force might not only change the dynamic load pattern on the pier but also cause strong structural vibration, which may threaten the driving and structural safety of the bridge. Many studies have been carried out to study the issues in the aspect of wave flume experiment, numerical simulation, calculation of breaking wave force, and random vibration response of the structure. Considering the studies of breaking wave load on bridge piers are lack of systematic summaries, this paper presents a comprehensive and up-to-date literature review of breaking wave research and practice related to bridges. Firstly, a brief introduction is given, which includes recent cases of bridge failures caused by breaking waves. Then, both scientific and technical studies are reviewed, categorized into four aspects: experimental study, numerical simulation, analytical calculation of breaking wave force, and the structural response under breaking wave. Finally, Discussion is provided on four emerging ideas to investigate breaking wave forces on the pier from both science and engineering perspectives.
基金Projects supported by the National Natural Science Foundation of China(Grant No.11772099)the Heilongjiang Touyan Innovation Team Program,China.
文摘The evolution of the nonlinear wave groups in deep water is investigated through laboratory measurements and numerical analysis.Laboratory experiments are conducted in deep-water wave tank,focusing on the characteristics of breaking waves arising from the evolved wave train.Some quantitative results are obtained for the significant breaking wave train,including the surface elevation time series,the local geometry,and the energy dissipation.A nonlinear model for the evolution of the wave groups in deep water is developed by adding eddy viscosity dissipation terms in the High Level Irrotational Green-Naghdi(HLIGN)equations.The results of the simulation are compared with the laboratory measurements,and good agreement is observed for the evolved wave train.
基金supported by Science and Technology Project of State Grid Corporation of China(No.GY17201200063)National Natural Science Foundation of China(No.51277123)Basic Research Project of Liaoning Key Laboratory of Education Department(LZ2015055)
文摘According to the stream theory, this paper proposes a mathematical model of the dielectric recovery characteristic based on the two-temperature ionization equilibrium equation. Taking the dynamic variation of charged particle's ionization and attachment into account, this model can be used in collaboration with the Coulomb collision model, which gives the relationship of the heavy particle temperature and electron temperature to calculate the electron density and temperature under different pressure and electric field conditions, so as to deliver the breakdown electric field strength under different pressure conditions. Meanwhile an experiment loop of the circuit breaker has been built to measure the breakdown voltage. It is shown that calculated results are in conformity with experiment results on the whole while results based on the stream criterion are larger than experiment results. This indicates that the mathematical model proposed here is more accurate for calculating the dielectric recovery characteristic, it is derived from the stream model with some improvement and refinement and has great significance for increasing the simulation accuracy of circuit breaker's interruption characteristic.
文摘The thick Cenozoic unconsolidated aquifer is deposited under Sunan syncline core in Huaibei coalfield, the water yield property of unconsolidated bottom aquifer is strong and water pressure is high in some areas (up to 4 MPa in some areas). Water inrush accident often occurs during mining under unconsolidated aquifer, the biggest characteristic is abnormal mine pressure and support break-off during water inrush accident comparing with normal condition. In order to study mechanism of?support break-off and water inrush during mining under the high confined thick unconsolidated aquifer, a simulation of similar material was designed. The experimental results indicated that, under normal condition, the compound breakage sequence of water-resisting key strata between coal seam and high confined thick unconsolidated aquifer is from top to bottom and the basic reason of synchronous fracture is the load of bottom key strata increased suddenly when the breakage of top key strata happened. Because of high confined thick unconsolidated aquifer, surface acts on the bottom key strata soil layer in the form of uniformly distributed load, which is the load-transfer mechanism of confined thick unconsolidated aquifer. Once the overlying key strata compound breaks, the height of unstable strata will reach far more than 30 meters and exceed support capability of current fully-mechanized mining supporter, which leads to support break-off accident during mining process under confined unconsolidated aquifer.