Based on two- and three-dimensional potential flow theories, the width effects on the hydrodynamics of a bottom-hinged trapezoidal pendulum wave energy converter are discussed. The two-dimensional eigenfunction expans...Based on two- and three-dimensional potential flow theories, the width effects on the hydrodynamics of a bottom-hinged trapezoidal pendulum wave energy converter are discussed. The two-dimensional eigenfunction expansion method is used to obtain the diffraction and radiation solutions when the converter width tends to be infinity. The trapezoidal section of the converter is approximated by a rectangular section for simplification. The nonlinear viscous damping effects are accounted for by including a drag term in the two- and three-dimensional methods. It is found that the three- dimensional results are in good agreement with the two-dimensional results when the converter width becomes larger, especially when the converter width is infinity, which shows that both of the methods are reasonable. Meantime, it is also found that the peak value of the conversion efficiency decreases as the converter width increases in short wave periods while increases when the converter width increases in long wave periods.展开更多
Experimental studies were conducted on a trapezoidal pendulum wave energy converter in regular waves. To obtain the incident wave height, the analytical method (AM) was used to separate the incident and reflected wa...Experimental studies were conducted on a trapezoidal pendulum wave energy converter in regular waves. To obtain the incident wave height, the analytical method (AM) was used to separate the incident and reflected waves propagating in a wave flume by analysing wave records measured at two locations. The response amplitude operator (RAO), primary conversion efficiency and the total conversion efficiency of the wave energy converter were studied; furthermore, the power take-off damping coefficients corresponding to the load resistances in the experiment were also obtained. The findings demonstrate that the natural period for a pendulum wave energy converter is relatively large. A lower load resistance gives rise to a larger damping coefficient. The model shows relatively higher wave energy conversion efficiency in the range of 1.0-1.2 s for the incident wave period. The maximum primary conversion efficiency achieved was 55.5%, and the maximum overall conversion efficiency was 39.4%.展开更多
A floating type pendulum wave energy converter(FPWEC) with a rotary vane pump as the power take-off system was proposed by Watabe et al.in 1998.They showed that this device had high energy conversion efficiency.In the...A floating type pendulum wave energy converter(FPWEC) with a rotary vane pump as the power take-off system was proposed by Watabe et al.in 1998.They showed that this device had high energy conversion efficiency.In the previous research,the authors conducted 2D wave tank tests in regular waves to evaluate the generating efficiency of FPWEC with a power take-off system composed of pulleys,belts and a generator.As a result,the influence of the electrical load on the generating efficiency was shown.Continuously,the load characteristics of FPWEC are pursued experimentally by using the servo motors to change the damping coefficient in this paper.In a later part of this paper,the motions of the model with the servo motors are compared with that of the case with the same power take-off system as the previous research.From the above experiment,it may be concluded that the maximum primary conversion efficiency is achieved as high as 98%at the optimal load.展开更多
基金supported by the Special Fund for Marine Renewable Energy of the Ministry of Finance of China(No.GD2010ZC02)
文摘Based on two- and three-dimensional potential flow theories, the width effects on the hydrodynamics of a bottom-hinged trapezoidal pendulum wave energy converter are discussed. The two-dimensional eigenfunction expansion method is used to obtain the diffraction and radiation solutions when the converter width tends to be infinity. The trapezoidal section of the converter is approximated by a rectangular section for simplification. The nonlinear viscous damping effects are accounted for by including a drag term in the two- and three-dimensional methods. It is found that the three- dimensional results are in good agreement with the two-dimensional results when the converter width becomes larger, especially when the converter width is infinity, which shows that both of the methods are reasonable. Meantime, it is also found that the peak value of the conversion efficiency decreases as the converter width increases in short wave periods while increases when the converter width increases in long wave periods.
基金financially supported by the Special Fund for Marine Renewable Energy of the Ministry of Finance of China(Grant No.GD2010ZC02)
文摘Experimental studies were conducted on a trapezoidal pendulum wave energy converter in regular waves. To obtain the incident wave height, the analytical method (AM) was used to separate the incident and reflected waves propagating in a wave flume by analysing wave records measured at two locations. The response amplitude operator (RAO), primary conversion efficiency and the total conversion efficiency of the wave energy converter were studied; furthermore, the power take-off damping coefficients corresponding to the load resistances in the experiment were also obtained. The findings demonstrate that the natural period for a pendulum wave energy converter is relatively large. A lower load resistance gives rise to a larger damping coefficient. The model shows relatively higher wave energy conversion efficiency in the range of 1.0-1.2 s for the incident wave period. The maximum primary conversion efficiency achieved was 55.5%, and the maximum overall conversion efficiency was 39.4%.
文摘A floating type pendulum wave energy converter(FPWEC) with a rotary vane pump as the power take-off system was proposed by Watabe et al.in 1998.They showed that this device had high energy conversion efficiency.In the previous research,the authors conducted 2D wave tank tests in regular waves to evaluate the generating efficiency of FPWEC with a power take-off system composed of pulleys,belts and a generator.As a result,the influence of the electrical load on the generating efficiency was shown.Continuously,the load characteristics of FPWEC are pursued experimentally by using the servo motors to change the damping coefficient in this paper.In a later part of this paper,the motions of the model with the servo motors are compared with that of the case with the same power take-off system as the previous research.From the above experiment,it may be concluded that the maximum primary conversion efficiency is achieved as high as 98%at the optimal load.