First,the properties of solutions of a typical second-order pendulum-like system with a specified nonlinear function were discussed.Then the case with a general form of nonlinearity is considered and its global proper...First,the properties of solutions of a typical second-order pendulum-like system with a specified nonlinear function were discussed.Then the case with a general form of nonlinearity is considered and its global properties were studied by using the qualitative theory of differential equations.As a result,sufficient conditions for estimating the critical damp are established,which improves the work by Leonov et al.展开更多
The property of dichotomy of interconnected second-order pendulum-like systems with multiple equilibria is investigated. This interconnection can be viewed as harmonic control of independent sub-systems. Linear interc...The property of dichotomy of interconnected second-order pendulum-like systems with multiple equilibria is investigated. This interconnection can be viewed as harmonic control of independent sub-systems. Linear interconnections and a class of input and output interconnections are considered in this paper. The effects of input and output interconnections are shown through a permutation matrix. Frequency domain and linear matrix inequality (LMI) conditions of dichotomy of interconnected pendulum-like systems are derived. It is shown that global properties of two coupled systems can be changed significantly through interconnections. Examples are given to illustrate the results.展开更多
This paper describes a novel type of pendulum-like oscillation controller for micro air vehicle(MAV) hover and stare state in the presence of external disturbances,which is based on linear-quadratic regulator(LQR) and...This paper describes a novel type of pendulum-like oscillation controller for micro air vehicle(MAV) hover and stare state in the presence of external disturbances,which is based on linear-quadratic regulator(LQR) and particle swarm optimization(PSO).A linear mathematical model of pendulum phenomenon based upon actual wind tunnel test data representing the hover mode is established,and a hybrid LQR and PSO approach is proposed to stabilize oscillation.PSO is applied to parameter optimization of the designed LQR controller.A series of comparative experiments are conducted,and the results have verified the feasibility,effectiveness and robustness of our proposed approach.展开更多
文摘First,the properties of solutions of a typical second-order pendulum-like system with a specified nonlinear function were discussed.Then the case with a general form of nonlinearity is considered and its global properties were studied by using the qualitative theory of differential equations.As a result,sufficient conditions for estimating the critical damp are established,which improves the work by Leonov et al.
基金Supported by National Natural Science Foundation of P. R. China (60334030, 60204007, 60474029, 60404007)
文摘The property of dichotomy of interconnected second-order pendulum-like systems with multiple equilibria is investigated. This interconnection can be viewed as harmonic control of independent sub-systems. Linear interconnections and a class of input and output interconnections are considered in this paper. The effects of input and output interconnections are shown through a permutation matrix. Frequency domain and linear matrix inequality (LMI) conditions of dichotomy of interconnected pendulum-like systems are derived. It is shown that global properties of two coupled systems can be changed significantly through interconnections. Examples are given to illustrate the results.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61273054,60975072,60604009)the Program for New Century Excellent Talents in University of China (Grant No. NCET-10-0021)+1 种基金the Aeronautical Foundation of China (Grant No. 20115151019)the Opening Foundation of State Key Laboratory of Virtual Reality Technology and Systems of China (Grant No. VR-2011-ZZ-01)
文摘This paper describes a novel type of pendulum-like oscillation controller for micro air vehicle(MAV) hover and stare state in the presence of external disturbances,which is based on linear-quadratic regulator(LQR) and particle swarm optimization(PSO).A linear mathematical model of pendulum phenomenon based upon actual wind tunnel test data representing the hover mode is established,and a hybrid LQR and PSO approach is proposed to stabilize oscillation.PSO is applied to parameter optimization of the designed LQR controller.A series of comparative experiments are conducted,and the results have verified the feasibility,effectiveness and robustness of our proposed approach.