The spectrum effect on the penetration of resonant magnetic perturbation(RMP) is studied with upgraded in-vessel RMP coils on J-TEXT.The poloidal spectrum of the RMP field,especially the amplitudes of 2/1 and 3/1 comp...The spectrum effect on the penetration of resonant magnetic perturbation(RMP) is studied with upgraded in-vessel RMP coils on J-TEXT.The poloidal spectrum of the RMP field,especially the amplitudes of 2/1 and 3/1 components,can be varied by the phase difference between the upper and lower coil rows,ΔΦ=Φ_(top)-Φ_(bottom),where Φ_(top)and Φ_(bottom)are the toroidal phases of the n=1 field of each coil row.The type of RMP penetration is found to be related to ΔΦ,including the RMP penetration of either 2/1 or 3/1 RMP and the successive penetrations of 3/1 RMP followed by the 2/1 RMP.For cases with penetration of only one RMP component,the penetration thresholds measured by the corresponding resonant component are close for variousΔΦ.However,the 2/1 RMP penetration threshold is significantly reduced if the 3/1 locked island is formed in advance.The changes in the rotation profile due to 3/1 locked island formation could partially contribute to the reduction of the 2/1 thresholds.展开更多
In environments with water depth variations, one-way modal solutions involve mode coupling. Higham and Tindle developed an accurate and fast approach using perturbation theory to locally determine the change in mode f...In environments with water depth variations, one-way modal solutions involve mode coupling. Higham and Tindle developed an accurate and fast approach using perturbation theory to locally determine the change in mode functions at steps. The method of Higham and Tindle is limited to low frequency (≤250 Hz). We extend the coupled perturbation method, thus it can be applied to higher frequencies. The approach is described and some examples are given.展开更多
The appearance of high-entropy alloys (HEAs) makes it possible for a material to possess both high strength and high ductility. It is with great potential to apply HEAs under extreme conditions such as in the penetrat...The appearance of high-entropy alloys (HEAs) makes it possible for a material to possess both high strength and high ductility. It is with great potential to apply HEAs under extreme conditions such as in the penetration process. In this paper, experiments of WFeNiMo HEA and tungsten heavy alloy (WHA) projectiles penetrating medium-carbon steel were conducted by using the ballistic gun and two-stage light-gas gun that can accelerate projectiles to impact velocities ranging from 1162 m/s to 2130 m/s. Depth of penetration (DOP) at elevated impact velocities of HEA and WHA projectiles were obtained firstly. Combined with the macroscopic and microscopic analysis of the residual projectiles, the transition of the penetration mode of the WFeNiMo HEA projectile was identified systemically. The experimental results indicated that the penetration mode of the HEA projectile changes from self-sharpening to mushrooming with the increase of impact velocity, while for the WHA projectile, the penetration mode is always mushrooming. The microstructure of the residual HEA projectiles showed that the phases tangle with each other and the morphology of the microstructure of the phases differs in the two penetration modes. Besides, the evolution of shear bands and fractures varies in the two modes. The evolution of the microstructure of HEAs causes the sharp-pointed nose to disappear and the HEA projectile ultimately becomes blunt as the impact velocity increases.展开更多
基金supported by the National Magnetic Confinement Fusion Energy R&D Program of China(Nos.2019YFE03010004,2018YFE0309100)the National Key R&D Program of China(No.2017YFE0301100)National Natural Science Foundation of China(Nos.11905078,12075096 and 51821005)
文摘The spectrum effect on the penetration of resonant magnetic perturbation(RMP) is studied with upgraded in-vessel RMP coils on J-TEXT.The poloidal spectrum of the RMP field,especially the amplitudes of 2/1 and 3/1 components,can be varied by the phase difference between the upper and lower coil rows,ΔΦ=Φ_(top)-Φ_(bottom),where Φ_(top)and Φ_(bottom)are the toroidal phases of the n=1 field of each coil row.The type of RMP penetration is found to be related to ΔΦ,including the RMP penetration of either 2/1 or 3/1 RMP and the successive penetrations of 3/1 RMP followed by the 2/1 RMP.For cases with penetration of only one RMP component,the penetration thresholds measured by the corresponding resonant component are close for variousΔΦ.However,the 2/1 RMP penetration threshold is significantly reduced if the 3/1 locked island is formed in advance.The changes in the rotation profile due to 3/1 locked island formation could partially contribute to the reduction of the 2/1 thresholds.
文摘In environments with water depth variations, one-way modal solutions involve mode coupling. Higham and Tindle developed an accurate and fast approach using perturbation theory to locally determine the change in mode functions at steps. The method of Higham and Tindle is limited to low frequency (≤250 Hz). We extend the coupled perturbation method, thus it can be applied to higher frequencies. The approach is described and some examples are given.
基金This work is funded by the National Natural Science Foundation of China(No.11790292)the NSAF Joint Fund(No.U1730101).
文摘The appearance of high-entropy alloys (HEAs) makes it possible for a material to possess both high strength and high ductility. It is with great potential to apply HEAs under extreme conditions such as in the penetration process. In this paper, experiments of WFeNiMo HEA and tungsten heavy alloy (WHA) projectiles penetrating medium-carbon steel were conducted by using the ballistic gun and two-stage light-gas gun that can accelerate projectiles to impact velocities ranging from 1162 m/s to 2130 m/s. Depth of penetration (DOP) at elevated impact velocities of HEA and WHA projectiles were obtained firstly. Combined with the macroscopic and microscopic analysis of the residual projectiles, the transition of the penetration mode of the WFeNiMo HEA projectile was identified systemically. The experimental results indicated that the penetration mode of the HEA projectile changes from self-sharpening to mushrooming with the increase of impact velocity, while for the WHA projectile, the penetration mode is always mushrooming. The microstructure of the residual HEA projectiles showed that the phases tangle with each other and the morphology of the microstructure of the phases differs in the two penetration modes. Besides, the evolution of shear bands and fractures varies in the two modes. The evolution of the microstructure of HEAs causes the sharp-pointed nose to disappear and the HEA projectile ultimately becomes blunt as the impact velocity increases.