Formation behaviors of rod-like reactive shaped charge penetrator(RRSCP)and their effects on damage capability are investigated by experiments and numerical simulations.The pulsed X-ray technology and a spaced aluminu...Formation behaviors of rod-like reactive shaped charge penetrator(RRSCP)and their effects on damage capability are investigated by experiments and numerical simulations.The pulsed X-ray technology and a spaced aluminum/steel plate with the thicknesses of 5 mm/100 mm are used.Three types of sphericalsegment aluminum-polytetrafluoroethylene-copper(Al-PTFE-Cu)reactive liners with Cu contents of 0%,46.6%,and 66%are fabricated and tested.The experimental results show that the reactive liners can form excellent rod-shaped penetrators with tail skirts under the shaped charge effect,but the tail skirts disappear over time.Moreover,rupturing damage to the aluminum plate and penetration to the steel plate are caused by the RRSCP impact.From simulation analysis,the RRSCP is formed by a mechanically and chemically coupled response with the reactive liner activated by shock in its outer walls and bottom and then backward overturning,forming a leading reactive penetrator and a following chemical energy cluster.The unique formation structure determines the damage modes of the aluminum plate and the steel plate.Further analysis indicates that the formation behaviors and damage capability of Al-PTFE-Cu RRSCP strongly depend on Cu content.With increasing Cu content,the velocity,activation extent,and reaction extent of Al-PTFE-Cu RRSCP decrease,which contribute to elongation and alleviate the negative effects of chemical reactions on elongation,significantly increasing the length-diameter ratio and thus enhancing the capability of steel plate penetration.However,the lower activation extent and energetic density will weaken the RRSCP's capability of causing rupturing damage to the aluminum plate.展开更多
Earth penetration weapon (EPW) is applicable for attacking underground targets protected by reinforced concrete and rocks. With increasing impact velocity, the mass loss/abrasion of penetrator increases, which signi...Earth penetration weapon (EPW) is applicable for attacking underground targets protected by reinforced concrete and rocks. With increasing impact velocity, the mass loss/abrasion of penetrator increases, which significandy decreases the penetration efficiency due to the change of nose shape. The abrasion may induce instability of the penetrator, and lead to failure of its structure. A common disadvantage, i.e. dependence on corresponding experimen- tal results, exists in all the available formulae, which limits their ranges of application in estimating the mass loss of penetrator. In this paper, we conduct a parametric study on the mass loss of penetrator, and indicate that the mass loss of penetrator can be determined by seven variables, i.e., the initial impact velocity, initial nose shape, melting heat, shank diameter of projectile and density and strength of target as well as the aggregate hardness of target. Further discussion on factors dominant in the mass abrasion of penetrator are given, which may be helpful for optimizing the target or the projectile for defensive or offensive objectives, respectively.展开更多
For application to exploration under the surface of icy objects in the solar system, the penetration of an impact probe into an icy target was experimentally simulated by using the ballistic range. Slender projectiles...For application to exploration under the surface of icy objects in the solar system, the penetration of an impact probe into an icy target was experimentally simulated by using the ballistic range. Slender projectiles with a cylindrical body and various nose shapes were tested at the impact velocity 130 - 420 m/s. The motion of the penetrator, fragmentation of ice and crater forming were observed by the high-speed camera. It revealed that the crown-shaped ejection was made for a short time after the impact and then the outward normal jet-like stream of ice pieces continued for much longer time. The concave shape of the crater was successfully visualized by pouring the plaster into it. The two-stage structure, the pit and the spall, was clearly confirmed. The rim was not formed around the crater. Observation of the crater surface and the ice around the trace of the penetrator shows that both crushing into smaller ice pieces and recompression into ice blocks are caused by the forward motion of the penetrator. In case of a body with a flow-through duct, ice pieces entering the inlet at the nose tip were ejected from the tail, resulting in relaxation of the impact force. The correlation of the penetration distance and the crater diameter with the impact velocity was investigated.展开更多
A propulsion device of following kinetic energy (KE) penetrator of tandem warheads due to shear ring mode is designed. An interior ballistics model is set up with the hypothesis of instantaneous shearing action. The...A propulsion device of following kinetic energy (KE) penetrator of tandem warheads due to shear ring mode is designed. An interior ballistics model is set up with the hypothesis of instantaneous shearing action. The influence of different factors on the interior ballistic characteristics of propulsion device is discussed. The relations between the initial velocity of the following KE penetrator and chamber pressure with time and travel are obtained. The theoretical model is verified through experimental results and can be used as a reference for tandem warheads design.展开更多
In order to study and apply the penetration performance of jetting penetrator charge at long stand-off distance, three jetting penetrator charges(JPC), including spherical cone liner, truncated wide-angle liner and sp...In order to study and apply the penetration performance of jetting penetrator charge at long stand-off distance, three jetting penetrator charges(JPC), including spherical cone liner, truncated wide-angle liner and spherical segment liner, are designed. The numerical simulation analysis of the formation, elongation and penetration processes of rod-like jet is conducted by using LS-DYNA software. And the penetrating test is carried out at long stand-off distance. The test results show that the rod-like jet formed by the optimized spherical segment liner can pierce through a 90mm thick 45# steel target at 20 charge diameters(CD) stand-off distance when the charge detonation mode is a central point initiation, and the penetration depth can be up to 1.6CD. It is concluded that, at 20 CD stand-off distance, the penetration performance of JPC with spherical segment liner is the best, that of truncated wide-angle liner takes second place, and that of spherical cone liner is the worst.展开更多
In marine engineering, the strength of a submarine sediment is an indispensable parameter for assessment of construction. In this study, a free-fall cone penetrator named IPen was developed to realize a rapid and effi...In marine engineering, the strength of a submarine sediment is an indispensable parameter for assessment of construction. In this study, a free-fall cone penetrator named IPen was developed to realize a rapid and efficient measurement of sediment strength. The equipment is characterized by modular design and self-contained data acquisition. It is equipped with an acceleration sensor, a water pressure sensor, and a piezocone penetration test(CPTu) probe. It is designed to be released from near seabed surface with a releaser and then fall freely to provide a higher penetration velocity. Its maximum working depth is approximately 2500 m and maximum penetration depth is approximately 3 m. To derive the correlation between penetration resistance and sediment strength, a calibrator was devised to determine the penetration-rate factor. In addition, the factor applicable to in situ test points was determined in laboratory experiments. In June 2016, the IPen was tested in situ in the South Yellow Sea, China, during a shared voyage funded by the National Science Foundation. Meanwhile, undisturbed column samples were collected for laboratory tests. Based on the in situ test results, it was demonstrated that the IPen could accurately record the working states of various sensors during the freely falling course. IPen test results reliably reflected the sediment strength at all the testing points when compared with laboratory calibration tests, in situ vane tests and penetration tests, laboratory penetration tests, and unconsolidated and undrained triaxial compression tests.展开更多
This paper proposes a type of double-layer charge liner fabricated using chemical vapor deposition(CVD)that has tungsten as its inner liner.The feasibility of this design was evaluated through penetration tests.Double...This paper proposes a type of double-layer charge liner fabricated using chemical vapor deposition(CVD)that has tungsten as its inner liner.The feasibility of this design was evaluated through penetration tests.Double-layer charge liners were fabricated by using CVD to deposit tungsten layers on the inner surfaces of pure T2 copper liners.The microstructures of the tungsten layers were analyzed using a scanning electron microscope(SEM).The feasibility analysis was carried out by pulsed X-rays,slug-retrieval test and static penetration tests.The shaped charge jet forming and penetration law of inner tungsten-coated double-layer liner were studied by numerical simulation method.The results showed that the double-layer liners could form well-shaped jets.The errors between the X-ray test results and the numerical results were within 11.07%.A slug-retrieval test was found that the retrieved slug was similar to a numerically simulated slug.Compared with the traditional pure copper shaped charge jet,the penetration depth of the double-layer shaped charge liner increased by 11.4% and>10.8% respectively.In summary,the test results are good,and the numerical simulation is in good agreement with the test,which verified the feasibility of using the CVD method to fabricate double-layer charge liners with a high-density and high-strength refractory metal as the inner liner.展开更多
Shaped charge warhead is important for enhancing the damage performance of underwater weapons.This paper used finite element analysis software and based on JPC water penetration experiments to examine the influence of...Shaped charge warhead is important for enhancing the damage performance of underwater weapons.This paper used finite element analysis software and based on JPC water penetration experiments to examine the influence of liner parameters(wall thickness,material),charge aspect ratio,and stand-off distance on the movement characteristics of JPC in water.The findings reveal that the head diameter of the JPC increases and experiences significant erosion after entering the water,the effective length of the JPC in water undergoes two distinct phases:a growth phase and a decrease phase,with the velocity of the JPC decaying exponentially.Increasing the liner thickness,stand-off distance and the charge aspect ratio can improve the erosion resistance and the velocity retention capacity of the JPC.The optimal ranges for liner thickness and stand-off distance are 0.0363D_(k) to 0.0545D_(k)(D_(k) is the charge diameter),the stand-off distance should be within 1.0D_(k).After the charge aspect ratio higher than 1.25,the charge structure exerts minimal influence the movement characteristics of the JPC in water.Material density plays a crucial role in the velocity decay pattern of the JPC during penetration.JPC with higher densities exhibit superior velocity retention capabilities in water,with the velocity decay pattern converging if the densities are similar.Consequently,copper,tantalum and tungsten liners are deemed appropriate for underwater shaped charge warhead.Finally,the results will provide an important reference for the design of underwater shaped charge warhead.展开更多
The majority of the projectiles used in the hypersonic penetration study are solid flat-nosed cylindrical projectiles with a diameter of less than 20 mm.This study aims to fill the gap in the experimental and analytic...The majority of the projectiles used in the hypersonic penetration study are solid flat-nosed cylindrical projectiles with a diameter of less than 20 mm.This study aims to fill the gap in the experimental and analytical study of the evolution of the nose shape of larger hollow projectiles under hypersonic penetration.In the hypersonic penetration test,eight ogive-nose AerMet100 steel projectiles with a diameter of 40 mm were launched to hit concrete targets with impact velocities that ranged from 1351 to 1877 m/s.Severe erosion of the projectiles was observed during high-speed penetration of heterogeneous targets,and apparent localized mushrooming occurred in the front nose of recovered projectiles.By examining the damage to projectiles,a linear relationship was found between the relative length reduction rate and the initial kinetic energy of projectiles in different penetration tests.Furthermore,microscopic analysis revealed the forming mechanism of the localized mushrooming phenomenon for eroding penetration,i.e.,material spall erosion abrasion mechanism,material flow and redistribution abrasion mechanism and localized radial upsetting deformation mechanism.Finally,a model of highspeed penetration that included erosion was established on the basis of a model of the evolution of the projectile nose that considers radial upsetting;the model was validated by test data from the literature and the present study.Depending upon the impact velocity,v0,the projectile nose may behave as undistorted,radially distorted or hemispherical.Due to the effects of abrasion of the projectile and enhancement of radial upsetting on the duration and amplitude of the secondary rising segment in the pulse shape of projectile deceleration,the predicted DOP had an upper limit.展开更多
Analytical model is presented herein to predict the diameter of crater in semi-infinite metallic targets struck by a long rod penetrator. Based on the observation that two mechanisms such as mushrooming and cavitation...Analytical model is presented herein to predict the diameter of crater in semi-infinite metallic targets struck by a long rod penetrator. Based on the observation that two mechanisms such as mushrooming and cavitation are involved in cavity expansion by a long rod penetrator, the model is constructed by using the laws of conservation of mass, momentum, energy, together with the u-v relationship of the newly suggested 1D theory of long rod penetration (see Lan and Wen, Sci China Tech Sci, 2010, 53(5): 1364–1373). It is demonstrated that the model predictions are in good agreement with available experimental data and numerical simulations obtained for the combinations of penetrator and target made of different materials.展开更多
PCrNi3MoV steel is a medium-carbon,low-alloy quenched and tempered steel that finds its applications in military gun barrels due to the high wear resistance and ablation resistance.To study the penetration and failure...PCrNi3MoV steel is a medium-carbon,low-alloy quenched and tempered steel that finds its applications in military gun barrels due to the high wear resistance and ablation resistance.To study the penetration and failure modes of PCrNi3MoV plates impacted by tungsten spheres,tungsten spheres of various diameters(5 mm,8 mm,and 10 mm)were used to impact PCrNi3MoV steel plates with thicknesses of 6 mm,9 mm,and 14 mm.The penetration performance of the spheres was analyzed for different velocities,and the ultimate penetration velocity of the plate was obtained.It was found that the primary failure modes of the PCrNi3MoV plate were compression pitting failure and shear failure.Using the dimensional analysis method,a relationship between the bulge height of the steel plate and the fragment velocity,an equation for the ultimate penetration velocity,and a relationship between the target penetration energy and the fragment velocity were obtained.Then,a projectile-target action index was proposed to describe the process of tungsten spheres with different velocities impacting target plates.The results suggested that under the same thickness of the target plate,a larger-diameter fragment required more kinetic energy to obtain the same ultimate penetration effect as a smaller-diameter fragment.The equations obtained through dimensional analysis predicted values that agreed well with experimental values,indicating that these equations can be applied to engineering applications.展开更多
Intelligent penetration testing is of great significance for the improvement of the security of information systems,and the critical issue is the planning of penetration test paths.In view of the difficulty for attack...Intelligent penetration testing is of great significance for the improvement of the security of information systems,and the critical issue is the planning of penetration test paths.In view of the difficulty for attackers to obtain complete network information in realistic network scenarios,Reinforcement Learning(RL)is a promising solution to discover the optimal penetration path under incomplete information about the target network.Existing RL-based methods are challenged by the sizeable discrete action space,which leads to difficulties in the convergence.Moreover,most methods still rely on experts’knowledge.To address these issues,this paper proposes a penetration path planning method based on reinforcement learning with episodic memory.First,the penetration testing problem is formally described in terms of reinforcement learning.To speed up the training process without specific prior knowledge,the proposed algorithm introduces episodic memory to store experienced advantageous strategies for the first time.Furthermore,the method offers an exploration strategy based on episodic memory to guide the agents in learning.The design makes full use of historical experience to achieve the purpose of reducing blind exploration and improving planning efficiency.Ultimately,comparison experiments are carried out with the existing RL-based methods.The results reveal that the proposed method has better convergence performance.The running time is reduced by more than 20%.展开更多
An unstably stratified flow entering into a stably stratified flow is referred to as penetrative convection,which is crucial to many physical processes and has been thought of as a key factor for extreme weather condi...An unstably stratified flow entering into a stably stratified flow is referred to as penetrative convection,which is crucial to many physical processes and has been thought of as a key factor for extreme weather conditions.Past theoretical,numerical,and experimental studies on penetrative convection are reviewed,along with field studies providing insights into turbulence modeling.The physical factors that initiate penetrative convection,including internal heat sources,nonlinear constitutive relationships,centrifugal forces and other complicated factors are summarized.Cutting-edge methods for understanding transport mechanisms and statistical properties of penetrative turbulence are also documented,e.g.,the variational approach and quasilinear approach,which derive scaling laws embedded in penetrative turbulence.Exploring these scaling laws in penetrative convection can improve our understanding of large-scale geophysical and astrophysical motions.To better the model of penetrative turbulence towards a practical situation,new directions,e.g.,penetrative convection in spheres,and radiation-forced convection,are proposed.展开更多
Catalysis of molecular radicals is often performed in interesting experimental configurations.One possible configuration is tubular geometry.The radicals are introduced into the tubes on one side,and stable molecules ...Catalysis of molecular radicals is often performed in interesting experimental configurations.One possible configuration is tubular geometry.The radicals are introduced into the tubes on one side,and stable molecules are exhausted on the other side.The penetration depth of radicals depends on numerous parameters,so it is not always feasible to calculate it.This article presents systematic measurements of the penetration depth of oxygen atoms along tubes made from nickel,cobalt,and copper.The source of O atoms was a surfatron-type microwave plasma.The initial density of O atoms depended on the gas flow and was 0.7×10^(21)m^(-3),2.4×10^(21)m^(-3),and 4.2×10^(21)m^(-3)at the flow rates of 50,300,and 600 sccm,and pressures of 10,35,and 60 Pa,respectively.The gas temperature remained at room temperature throughout the experiments.The dissociation fraction decreased exponentially along the length of the tubes in all cases.The penetration depths for well-oxidized nickel were 1.2,1.7,and 2.4 cm,respectively.For cobalt,they were slightly lower at 1.0,1.3,and 1.6 cm,respectively,while for copper,they were 1.1,1.3,and 1.7 cm,respectively.The results were explained by gas dynamics and heterogeneous surface association.These data are useful in any attempt to estimate the loss of molecular fragments along tubes,which serve as catalysts for the association of various radicals to stable molecules.展开更多
In 2017,a ballistic phenomenological model was proposed by the authors of Ref.[1] to numerically simulate the experimental depths of small caliber projectiles impacting walls made of adobe.The opportunity for a new mo...In 2017,a ballistic phenomenological model was proposed by the authors of Ref.[1] to numerically simulate the experimental depths of small caliber projectiles impacting walls made of adobe.The opportunity for a new model in the field revealed from the observation that two older models recently used by the authors of Ref.[2] shared a linear relationship between the penetration depth P and the impacting velocity v_(O).展开更多
The variation characteristics of bubble morphology and the thermal-physical properties of bubble boundary in the top-blown smelting furnace were explored by means of the computational fluid dynamics method.The essenti...The variation characteristics of bubble morphology and the thermal-physical properties of bubble boundary in the top-blown smelting furnace were explored by means of the computational fluid dynamics method.The essential aspects of the fluid phase(e.g.,splashing volume,dead zone of copper slag,and gas penetration depth)were explored together with the effect of sinusoidal pulsating gas intake on the momentum-transfer performance between phases.The results illustrated that two relatively larger vortices and two smaller vortices appear in the bubble waist and below the lance,respectively.The expansion of larger ones as well as the shrinking of smaller ones combine to cause the contraction of the bubble waist.Compared to the results of the case with a fixed gas injection velocity(V_(g)=58 m/s),the splashing volume and dead zone volume of the slag under the V_(g)=58+10sin(2πt)condition are reduced by 24.9%and 23.5%,respectively,where t represents the instant time.Gas penetration depth and slag motion velocity of the latter are 1.03 and 1.31 times high-er than those of the former,respectively.展开更多
Shaped charge liner(SCL)has been extensively applied in oil recovery and defense industries.Achieving superior penetration capability through optimizing SCL structures presents a substantial challenge due to intricate...Shaped charge liner(SCL)has been extensively applied in oil recovery and defense industries.Achieving superior penetration capability through optimizing SCL structures presents a substantial challenge due to intricate rate-dependent processes involving detonation-driven liner collapse,high-speed jet stretching,and penetration.This study introduces an innovative optimization strategy for SCL structures that employs jet penetration efficiency as the primary objective function.The strategy combines experimentally validated finite element method with machine learning(FEM-ML).We propose a novel jet penetration efficiency index derived from enhanced cutoff velocity and shape characteristics of the jet via machine learning.This index effectively evaluates the jet penetration performance.Furthermore,a multi-model fusion based on a machine learning optimization method,called XGBOOST-MFO,is put forward to optimize SCL structure over a large input space.The strategy's feasibility is demonstrated through the optimization of copper SCL implemented via the FEM-ML strategy.Finally,this strategy is extended to optimize the structure of the recently emerging CrMnFeCoNi high-entropy alloy conical liners and hemispherical copper liners.Therefore,the strategy can provide helpful guidance for the engineering design of SCL.展开更多
In this study, the effect of extreme laser fields on the α decay process of ground-state even–even nuclei was investigated.Using the deformed Gamow-like model, we found that state-of-the-art lasers can cause a sligh...In this study, the effect of extreme laser fields on the α decay process of ground-state even–even nuclei was investigated.Using the deformed Gamow-like model, we found that state-of-the-art lasers can cause a slight change in the α decay penetration probability of most nuclei. In addition, we studied the correlation between the rate of change of the α decay penetration probability and angle between the directions of the laser electric field and α particle emission for different nuclei. Based on this correlation, the average effect of extreme laser fields on the half-life of many nuclei with arbitrary α particle emission angles was calculated. The calculations show that the laser suppression and promotion effects on the α decay penetration probability of the nuclei population with completely random α particle-emission directions are not completely canceled.The remainder led to a change in the average penetration probability of the nuclei. Furthermore, the possibility of achieving a higher average rate of change by altering the spatial shape of the laser is explored. We conclude that circularly polarized lasers may be helpful in future experiments to achieve a more significant average rate of change of the α decay half-life of the nuclei population.展开更多
This study systematically examines the energy dissipation mechanisms and ballistic characteristics of foam sandwich panels(FSP)under high-velocity impact using the explicit non-linear finite element method.Based on th...This study systematically examines the energy dissipation mechanisms and ballistic characteristics of foam sandwich panels(FSP)under high-velocity impact using the explicit non-linear finite element method.Based on the geometric topology of the FSP system,three FSP configurations with the same areal density are derived,namely multi-layer,gradient core and asymmetric face sheet,and three key structural parameters are identified:core thickness(t_(c)),face sheet thickness(t_(f))and overlap face/core number(n_(o)).The ballistic performance of the FSP system is comprehensively evaluated in terms of the ballistic limit velocity(BLV),deformation modes,energy dissipation mechanism,and specific penetration energy(SPE).The results show that the FSP system exhibits a significant configuration dependence,whose ballistic performance ranking is:asymmetric face sheet>gradient core>multi-layer.The mass distribution of the top and bottom face sheets plays a critical role in the ballistic resistance of the FSP system.Both BLV and SPE increase with tf,while the raising tcor noleads to an increase in BLV but a decrease in SPE.Further,a face-core synchronous enhancement mechanism is discovered by the energy dissipation analysis,based on which the ballistic optimization procedure is also conducted and a design chart is established.This study shed light on the anti-penetration mechanism of the FSP system and might provide a theoretical basis for its engineering application.展开更多
The trajectory of the compact torus(CT)within a tokamak discharge is crucial to fueling.In this study,we developed a penetration model with a vacuum magnetic field region to accurately determine CT trajectories in tok...The trajectory of the compact torus(CT)within a tokamak discharge is crucial to fueling.In this study,we developed a penetration model with a vacuum magnetic field region to accurately determine CT trajectories in tokamak discharges.This model was used to calculate the trajectory and penetration parameters of CT injections by applying both perpendicular and tangential injection schemes in both HL-2A and ITER tokamaks.For perpendicular injection along the tokamak's major radius direction from the outboard,CTs with the same injection parameters exhibited a 0.08 reduction in relative penetration depth when injected into HL-2A and a 0.13reduction when injected into ITER geometry when considering the vacuum magnetic field region compared with cases where this region was not considered.In addition,we proposed an optimization method for determining the CT's initial injection velocity to accurately calculate the initial injection velocity of CTs for central fueling in tokamaks.Furthermore,this paper discusses schemes for the tangential injection of CT into tokamak discharges.The optimal injection angle and CT magnetic moment direction for injection into both HL-2A and ITER were determined through numerical simulations.Finally,the kinetic energy loss occurring when the CT penetrated the vacuum magnetic field region in ITER was reduced byΔEk=975.08 J by optimizing the injection angle for the CT injected into ITER.These results provide valuable insights for optimizing injection angles in fusion experiments.Our model closely represents actual experimental scenarios and can assist the design of CT parameters.展开更多
基金the National Natural Science Foundation of China(No.12172052 and No.12132003).
文摘Formation behaviors of rod-like reactive shaped charge penetrator(RRSCP)and their effects on damage capability are investigated by experiments and numerical simulations.The pulsed X-ray technology and a spaced aluminum/steel plate with the thicknesses of 5 mm/100 mm are used.Three types of sphericalsegment aluminum-polytetrafluoroethylene-copper(Al-PTFE-Cu)reactive liners with Cu contents of 0%,46.6%,and 66%are fabricated and tested.The experimental results show that the reactive liners can form excellent rod-shaped penetrators with tail skirts under the shaped charge effect,but the tail skirts disappear over time.Moreover,rupturing damage to the aluminum plate and penetration to the steel plate are caused by the RRSCP impact.From simulation analysis,the RRSCP is formed by a mechanically and chemically coupled response with the reactive liner activated by shock in its outer walls and bottom and then backward overturning,forming a leading reactive penetrator and a following chemical energy cluster.The unique formation structure determines the damage modes of the aluminum plate and the steel plate.Further analysis indicates that the formation behaviors and damage capability of Al-PTFE-Cu RRSCP strongly depend on Cu content.With increasing Cu content,the velocity,activation extent,and reaction extent of Al-PTFE-Cu RRSCP decrease,which contribute to elongation and alleviate the negative effects of chemical reactions on elongation,significantly increasing the length-diameter ratio and thus enhancing the capability of steel plate penetration.However,the lower activation extent and energetic density will weaken the RRSCP's capability of causing rupturing damage to the aluminum plate.
基金supported by the National Natural Science Foundation of China (10672152)the Science Foundation of China Academy of Engineering Physics (2009A0201009)the Innovation Fund of the Institute of Structural Mechanics,CAEP (09CXJ05)
文摘Earth penetration weapon (EPW) is applicable for attacking underground targets protected by reinforced concrete and rocks. With increasing impact velocity, the mass loss/abrasion of penetrator increases, which significandy decreases the penetration efficiency due to the change of nose shape. The abrasion may induce instability of the penetrator, and lead to failure of its structure. A common disadvantage, i.e. dependence on corresponding experimen- tal results, exists in all the available formulae, which limits their ranges of application in estimating the mass loss of penetrator. In this paper, we conduct a parametric study on the mass loss of penetrator, and indicate that the mass loss of penetrator can be determined by seven variables, i.e., the initial impact velocity, initial nose shape, melting heat, shank diameter of projectile and density and strength of target as well as the aggregate hardness of target. Further discussion on factors dominant in the mass abrasion of penetrator are given, which may be helpful for optimizing the target or the projectile for defensive or offensive objectives, respectively.
文摘For application to exploration under the surface of icy objects in the solar system, the penetration of an impact probe into an icy target was experimentally simulated by using the ballistic range. Slender projectiles with a cylindrical body and various nose shapes were tested at the impact velocity 130 - 420 m/s. The motion of the penetrator, fragmentation of ice and crater forming were observed by the high-speed camera. It revealed that the crown-shaped ejection was made for a short time after the impact and then the outward normal jet-like stream of ice pieces continued for much longer time. The concave shape of the crater was successfully visualized by pouring the plaster into it. The two-stage structure, the pit and the spall, was clearly confirmed. The rim was not formed around the crater. Observation of the crater surface and the ice around the trace of the penetrator shows that both crushing into smaller ice pieces and recompression into ice blocks are caused by the forward motion of the penetrator. In case of a body with a flow-through duct, ice pieces entering the inlet at the nose tip were ejected from the tail, resulting in relaxation of the impact force. The correlation of the penetration distance and the crater diameter with the impact velocity was investigated.
基金the Ministerial Level Advanced Research Foundation(40404020104)
文摘A propulsion device of following kinetic energy (KE) penetrator of tandem warheads due to shear ring mode is designed. An interior ballistics model is set up with the hypothesis of instantaneous shearing action. The influence of different factors on the interior ballistic characteristics of propulsion device is discussed. The relations between the initial velocity of the following KE penetrator and chamber pressure with time and travel are obtained. The theoretical model is verified through experimental results and can be used as a reference for tandem warheads design.
文摘In order to study and apply the penetration performance of jetting penetrator charge at long stand-off distance, three jetting penetrator charges(JPC), including spherical cone liner, truncated wide-angle liner and spherical segment liner, are designed. The numerical simulation analysis of the formation, elongation and penetration processes of rod-like jet is conducted by using LS-DYNA software. And the penetrating test is carried out at long stand-off distance. The test results show that the rod-like jet formed by the optimized spherical segment liner can pierce through a 90mm thick 45# steel target at 20 charge diameters(CD) stand-off distance when the charge detonation mode is a central point initiation, and the penetration depth can be up to 1.6CD. It is concluded that, at 20 CD stand-off distance, the penetration performance of JPC with spherical segment liner is the best, that of truncated wide-angle liner takes second place, and that of spherical cone liner is the worst.
基金funded by the National Natural Science Foundation of China (Nos. 41502265 and 41427803)the Key Research and Development Program of Shandong Province, China (No. 2016ZDJS09A03)+1 种基金Data acquisition and sample collections were supported by NSFC Open Research Cruise (Cruise Nos. NORC2016-01 and NORC2017-05)funded by Shiptime Sharing Project of NSFC
文摘In marine engineering, the strength of a submarine sediment is an indispensable parameter for assessment of construction. In this study, a free-fall cone penetrator named IPen was developed to realize a rapid and efficient measurement of sediment strength. The equipment is characterized by modular design and self-contained data acquisition. It is equipped with an acceleration sensor, a water pressure sensor, and a piezocone penetration test(CPTu) probe. It is designed to be released from near seabed surface with a releaser and then fall freely to provide a higher penetration velocity. Its maximum working depth is approximately 2500 m and maximum penetration depth is approximately 3 m. To derive the correlation between penetration resistance and sediment strength, a calibrator was devised to determine the penetration-rate factor. In addition, the factor applicable to in situ test points was determined in laboratory experiments. In June 2016, the IPen was tested in situ in the South Yellow Sea, China, during a shared voyage funded by the National Science Foundation. Meanwhile, undisturbed column samples were collected for laboratory tests. Based on the in situ test results, it was demonstrated that the IPen could accurately record the working states of various sensors during the freely falling course. IPen test results reliably reflected the sediment strength at all the testing points when compared with laboratory calibration tests, in situ vane tests and penetration tests, laboratory penetration tests, and unconsolidated and undrained triaxial compression tests.
基金funded by the China Postdoctoral Science Foundation(Grant No.2022M721614)the opening project of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology(Grant No.KFJJ23-07M)。
文摘This paper proposes a type of double-layer charge liner fabricated using chemical vapor deposition(CVD)that has tungsten as its inner liner.The feasibility of this design was evaluated through penetration tests.Double-layer charge liners were fabricated by using CVD to deposit tungsten layers on the inner surfaces of pure T2 copper liners.The microstructures of the tungsten layers were analyzed using a scanning electron microscope(SEM).The feasibility analysis was carried out by pulsed X-rays,slug-retrieval test and static penetration tests.The shaped charge jet forming and penetration law of inner tungsten-coated double-layer liner were studied by numerical simulation method.The results showed that the double-layer liners could form well-shaped jets.The errors between the X-ray test results and the numerical results were within 11.07%.A slug-retrieval test was found that the retrieved slug was similar to a numerically simulated slug.Compared with the traditional pure copper shaped charge jet,the penetration depth of the double-layer shaped charge liner increased by 11.4% and>10.8% respectively.In summary,the test results are good,and the numerical simulation is in good agreement with the test,which verified the feasibility of using the CVD method to fabricate double-layer charge liners with a high-density and high-strength refractory metal as the inner liner.
基金supported by the National Natural Science Foundation of China(Grant No.11672278)。
文摘Shaped charge warhead is important for enhancing the damage performance of underwater weapons.This paper used finite element analysis software and based on JPC water penetration experiments to examine the influence of liner parameters(wall thickness,material),charge aspect ratio,and stand-off distance on the movement characteristics of JPC in water.The findings reveal that the head diameter of the JPC increases and experiences significant erosion after entering the water,the effective length of the JPC in water undergoes two distinct phases:a growth phase and a decrease phase,with the velocity of the JPC decaying exponentially.Increasing the liner thickness,stand-off distance and the charge aspect ratio can improve the erosion resistance and the velocity retention capacity of the JPC.The optimal ranges for liner thickness and stand-off distance are 0.0363D_(k) to 0.0545D_(k)(D_(k) is the charge diameter),the stand-off distance should be within 1.0D_(k).After the charge aspect ratio higher than 1.25,the charge structure exerts minimal influence the movement characteristics of the JPC in water.Material density plays a crucial role in the velocity decay pattern of the JPC during penetration.JPC with higher densities exhibit superior velocity retention capabilities in water,with the velocity decay pattern converging if the densities are similar.Consequently,copper,tantalum and tungsten liners are deemed appropriate for underwater shaped charge warhead.Finally,the results will provide an important reference for the design of underwater shaped charge warhead.
基金the National Natural Science Foundation of China(Grant No.12102050)the Open Fund of State Key Laboratory of Explosion Science and Technology(Grant No.SKLEST-ZZ-21-18).
文摘The majority of the projectiles used in the hypersonic penetration study are solid flat-nosed cylindrical projectiles with a diameter of less than 20 mm.This study aims to fill the gap in the experimental and analytical study of the evolution of the nose shape of larger hollow projectiles under hypersonic penetration.In the hypersonic penetration test,eight ogive-nose AerMet100 steel projectiles with a diameter of 40 mm were launched to hit concrete targets with impact velocities that ranged from 1351 to 1877 m/s.Severe erosion of the projectiles was observed during high-speed penetration of heterogeneous targets,and apparent localized mushrooming occurred in the front nose of recovered projectiles.By examining the damage to projectiles,a linear relationship was found between the relative length reduction rate and the initial kinetic energy of projectiles in different penetration tests.Furthermore,microscopic analysis revealed the forming mechanism of the localized mushrooming phenomenon for eroding penetration,i.e.,material spall erosion abrasion mechanism,material flow and redistribution abrasion mechanism and localized radial upsetting deformation mechanism.Finally,a model of highspeed penetration that included erosion was established on the basis of a model of the evolution of the projectile nose that considers radial upsetting;the model was validated by test data from the literature and the present study.Depending upon the impact velocity,v0,the projectile nose may behave as undistorted,radially distorted or hemispherical.Due to the effects of abrasion of the projectile and enhancement of radial upsetting on the duration and amplitude of the secondary rising segment in the pulse shape of projectile deceleration,the predicted DOP had an upper limit.
基金supported by the National Natural Science Foundation of China (Grant No. 10872195)
文摘Analytical model is presented herein to predict the diameter of crater in semi-infinite metallic targets struck by a long rod penetrator. Based on the observation that two mechanisms such as mushrooming and cavitation are involved in cavity expansion by a long rod penetrator, the model is constructed by using the laws of conservation of mass, momentum, energy, together with the u-v relationship of the newly suggested 1D theory of long rod penetration (see Lan and Wen, Sci China Tech Sci, 2010, 53(5): 1364–1373). It is demonstrated that the model predictions are in good agreement with available experimental data and numerical simulations obtained for the combinations of penetrator and target made of different materials.
文摘PCrNi3MoV steel is a medium-carbon,low-alloy quenched and tempered steel that finds its applications in military gun barrels due to the high wear resistance and ablation resistance.To study the penetration and failure modes of PCrNi3MoV plates impacted by tungsten spheres,tungsten spheres of various diameters(5 mm,8 mm,and 10 mm)were used to impact PCrNi3MoV steel plates with thicknesses of 6 mm,9 mm,and 14 mm.The penetration performance of the spheres was analyzed for different velocities,and the ultimate penetration velocity of the plate was obtained.It was found that the primary failure modes of the PCrNi3MoV plate were compression pitting failure and shear failure.Using the dimensional analysis method,a relationship between the bulge height of the steel plate and the fragment velocity,an equation for the ultimate penetration velocity,and a relationship between the target penetration energy and the fragment velocity were obtained.Then,a projectile-target action index was proposed to describe the process of tungsten spheres with different velocities impacting target plates.The results suggested that under the same thickness of the target plate,a larger-diameter fragment required more kinetic energy to obtain the same ultimate penetration effect as a smaller-diameter fragment.The equations obtained through dimensional analysis predicted values that agreed well with experimental values,indicating that these equations can be applied to engineering applications.
文摘Intelligent penetration testing is of great significance for the improvement of the security of information systems,and the critical issue is the planning of penetration test paths.In view of the difficulty for attackers to obtain complete network information in realistic network scenarios,Reinforcement Learning(RL)is a promising solution to discover the optimal penetration path under incomplete information about the target network.Existing RL-based methods are challenged by the sizeable discrete action space,which leads to difficulties in the convergence.Moreover,most methods still rely on experts’knowledge.To address these issues,this paper proposes a penetration path planning method based on reinforcement learning with episodic memory.First,the penetration testing problem is formally described in terms of reinforcement learning.To speed up the training process without specific prior knowledge,the proposed algorithm introduces episodic memory to store experienced advantageous strategies for the first time.Furthermore,the method offers an exploration strategy based on episodic memory to guide the agents in learning.The design makes full use of historical experience to achieve the purpose of reducing blind exploration and improving planning efficiency.Ultimately,comparison experiments are carried out with the existing RL-based methods.The results reveal that the proposed method has better convergence performance.The running time is reduced by more than 20%.
基金supported by the Heilongjiang Touyan Innovative Program Teammade possible through the generous support of the NSFC (Grant No. 52176065)the Fundamental Research Funds for the Central Universities(Grant No. 2022FRFK060022)
文摘An unstably stratified flow entering into a stably stratified flow is referred to as penetrative convection,which is crucial to many physical processes and has been thought of as a key factor for extreme weather conditions.Past theoretical,numerical,and experimental studies on penetrative convection are reviewed,along with field studies providing insights into turbulence modeling.The physical factors that initiate penetrative convection,including internal heat sources,nonlinear constitutive relationships,centrifugal forces and other complicated factors are summarized.Cutting-edge methods for understanding transport mechanisms and statistical properties of penetrative turbulence are also documented,e.g.,the variational approach and quasilinear approach,which derive scaling laws embedded in penetrative turbulence.Exploring these scaling laws in penetrative convection can improve our understanding of large-scale geophysical and astrophysical motions.To better the model of penetrative turbulence towards a practical situation,new directions,e.g.,penetrative convection in spheres,and radiation-forced convection,are proposed.
基金funded by the Slovenian Research Agency,Core Funding(No.P2-0082)and Project(No.L24487)。
文摘Catalysis of molecular radicals is often performed in interesting experimental configurations.One possible configuration is tubular geometry.The radicals are introduced into the tubes on one side,and stable molecules are exhausted on the other side.The penetration depth of radicals depends on numerous parameters,so it is not always feasible to calculate it.This article presents systematic measurements of the penetration depth of oxygen atoms along tubes made from nickel,cobalt,and copper.The source of O atoms was a surfatron-type microwave plasma.The initial density of O atoms depended on the gas flow and was 0.7×10^(21)m^(-3),2.4×10^(21)m^(-3),and 4.2×10^(21)m^(-3)at the flow rates of 50,300,and 600 sccm,and pressures of 10,35,and 60 Pa,respectively.The gas temperature remained at room temperature throughout the experiments.The dissociation fraction decreased exponentially along the length of the tubes in all cases.The penetration depths for well-oxidized nickel were 1.2,1.7,and 2.4 cm,respectively.For cobalt,they were slightly lower at 1.0,1.3,and 1.6 cm,respectively,while for copper,they were 1.1,1.3,and 1.7 cm,respectively.The results were explained by gas dynamics and heterogeneous surface association.These data are useful in any attempt to estimate the loss of molecular fragments along tubes,which serve as catalysts for the association of various radicals to stable molecules.
文摘In 2017,a ballistic phenomenological model was proposed by the authors of Ref.[1] to numerically simulate the experimental depths of small caliber projectiles impacting walls made of adobe.The opportunity for a new model in the field revealed from the observation that two older models recently used by the authors of Ref.[2] shared a linear relationship between the penetration depth P and the impacting velocity v_(O).
基金the Applied Basic Research Project of Yunnan Province,China(No.202301 AT070411).
文摘The variation characteristics of bubble morphology and the thermal-physical properties of bubble boundary in the top-blown smelting furnace were explored by means of the computational fluid dynamics method.The essential aspects of the fluid phase(e.g.,splashing volume,dead zone of copper slag,and gas penetration depth)were explored together with the effect of sinusoidal pulsating gas intake on the momentum-transfer performance between phases.The results illustrated that two relatively larger vortices and two smaller vortices appear in the bubble waist and below the lance,respectively.The expansion of larger ones as well as the shrinking of smaller ones combine to cause the contraction of the bubble waist.Compared to the results of the case with a fixed gas injection velocity(V_(g)=58 m/s),the splashing volume and dead zone volume of the slag under the V_(g)=58+10sin(2πt)condition are reduced by 24.9%and 23.5%,respectively,where t represents the instant time.Gas penetration depth and slag motion velocity of the latter are 1.03 and 1.31 times high-er than those of the former,respectively.
基金supported by the NSFC Basic Science Center Program for"Multi-scale Problems in Nonlinear Mechanics" (Grant No.11988102)the NSFC (Grant Nos.U2141204,12172367)+2 种基金the Key Research Program of the Chinese Academy of Sciences (Grant No.ZDRW-CN-2021-2-3)the National Key Research and Development Program of China (Grant No.2022YFC3320504-02)the opening project of State Key Laboratory of Explosion Science and Technology (Grant No.KFJJ21-01 and No.KFJJ18-14 M)。
文摘Shaped charge liner(SCL)has been extensively applied in oil recovery and defense industries.Achieving superior penetration capability through optimizing SCL structures presents a substantial challenge due to intricate rate-dependent processes involving detonation-driven liner collapse,high-speed jet stretching,and penetration.This study introduces an innovative optimization strategy for SCL structures that employs jet penetration efficiency as the primary objective function.The strategy combines experimentally validated finite element method with machine learning(FEM-ML).We propose a novel jet penetration efficiency index derived from enhanced cutoff velocity and shape characteristics of the jet via machine learning.This index effectively evaluates the jet penetration performance.Furthermore,a multi-model fusion based on a machine learning optimization method,called XGBOOST-MFO,is put forward to optimize SCL structure over a large input space.The strategy's feasibility is demonstrated through the optimization of copper SCL implemented via the FEM-ML strategy.Finally,this strategy is extended to optimize the structure of the recently emerging CrMnFeCoNi high-entropy alloy conical liners and hemispherical copper liners.Therefore,the strategy can provide helpful guidance for the engineering design of SCL.
基金This work was supported by the National Nature Science Foundation of China(Nos.12375244,12135009)the Science and Technology Innovation Program of Hunan Province(No.2020RC4020)+1 种基金the Hunan Provincial Innovation Foundation for Postgraduate(No.CX20210007)Natural Science Research Project of Yichang City(No.A23-2-028).
文摘In this study, the effect of extreme laser fields on the α decay process of ground-state even–even nuclei was investigated.Using the deformed Gamow-like model, we found that state-of-the-art lasers can cause a slight change in the α decay penetration probability of most nuclei. In addition, we studied the correlation between the rate of change of the α decay penetration probability and angle between the directions of the laser electric field and α particle emission for different nuclei. Based on this correlation, the average effect of extreme laser fields on the half-life of many nuclei with arbitrary α particle emission angles was calculated. The calculations show that the laser suppression and promotion effects on the α decay penetration probability of the nuclei population with completely random α particle-emission directions are not completely canceled.The remainder led to a change in the average penetration probability of the nuclei. Furthermore, the possibility of achieving a higher average rate of change by altering the spatial shape of the laser is explored. We conclude that circularly polarized lasers may be helpful in future experiments to achieve a more significant average rate of change of the α decay half-life of the nuclei population.
基金the National Natural Science Foundation of China(Grant Nos.11972096,12372127 and 12202085)the Fundamental Research Funds for the Central Universities(Grant No.2022CDJQY004)+4 种基金Chongqing Natural Science Foundation(Grant No.cstc2021ycjh-bgzxm0117)China Postdoctoral Science Foundation(Grant No.2022M720562)Chongqing Postdoctoral Science Foundation(Grant No.2021XM3022)supported by the opening project of State Key Laboratory of Explosion Science and Technology(Beijing Institute of Technology)The opening project number is KFJJ23-18 M。
文摘This study systematically examines the energy dissipation mechanisms and ballistic characteristics of foam sandwich panels(FSP)under high-velocity impact using the explicit non-linear finite element method.Based on the geometric topology of the FSP system,three FSP configurations with the same areal density are derived,namely multi-layer,gradient core and asymmetric face sheet,and three key structural parameters are identified:core thickness(t_(c)),face sheet thickness(t_(f))and overlap face/core number(n_(o)).The ballistic performance of the FSP system is comprehensively evaluated in terms of the ballistic limit velocity(BLV),deformation modes,energy dissipation mechanism,and specific penetration energy(SPE).The results show that the FSP system exhibits a significant configuration dependence,whose ballistic performance ranking is:asymmetric face sheet>gradient core>multi-layer.The mass distribution of the top and bottom face sheets plays a critical role in the ballistic resistance of the FSP system.Both BLV and SPE increase with tf,while the raising tcor noleads to an increase in BLV but a decrease in SPE.Further,a face-core synchronous enhancement mechanism is discovered by the energy dissipation analysis,based on which the ballistic optimization procedure is also conducted and a design chart is established.This study shed light on the anti-penetration mechanism of the FSP system and might provide a theoretical basis for its engineering application.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2022YFE03100004 and 2022YFE03060003)National Natural Science Foundation of China(Nos.12375226,12175227 and 11875255)the China Postdoctoral Science Foundation(No.2022M723066).
文摘The trajectory of the compact torus(CT)within a tokamak discharge is crucial to fueling.In this study,we developed a penetration model with a vacuum magnetic field region to accurately determine CT trajectories in tokamak discharges.This model was used to calculate the trajectory and penetration parameters of CT injections by applying both perpendicular and tangential injection schemes in both HL-2A and ITER tokamaks.For perpendicular injection along the tokamak's major radius direction from the outboard,CTs with the same injection parameters exhibited a 0.08 reduction in relative penetration depth when injected into HL-2A and a 0.13reduction when injected into ITER geometry when considering the vacuum magnetic field region compared with cases where this region was not considered.In addition,we proposed an optimization method for determining the CT's initial injection velocity to accurately calculate the initial injection velocity of CTs for central fueling in tokamaks.Furthermore,this paper discusses schemes for the tangential injection of CT into tokamak discharges.The optimal injection angle and CT magnetic moment direction for injection into both HL-2A and ITER were determined through numerical simulations.Finally,the kinetic energy loss occurring when the CT penetrated the vacuum magnetic field region in ITER was reduced byΔEk=975.08 J by optimizing the injection angle for the CT injected into ITER.These results provide valuable insights for optimizing injection angles in fusion experiments.Our model closely represents actual experimental scenarios and can assist the design of CT parameters.