Based on density functional theory (DFT) calculations, we investigate the spin-related properties of spinless-hole injected organic molecule pentacene (Pc). DFT calculations reveal that there is spontaneous spin p...Based on density functional theory (DFT) calculations, we investigate the spin-related properties of spinless-hole injected organic molecule pentacene (Pc). DFT calculations reveal that there is spontaneous spin polarization in Pc when spinless-hole is injected. The chargeinduced magnetic moment of Pc increases linearly with the increasing of the extra hole charge amount and its maximum can be up to 1 μB per injected spinless-hole per Pc molecule. The magnetic moment is expected due to the injected unpaired charge. The injected hole will preferably ll the spin-splitted carbon pz orbitals, which makes the Pc molecule spin polarize.展开更多
A comprehensive understanding of the organic semiconductor material pentacene is meaningful for organic fieldeffect transistors (OFETs). Thin films of pentacene are the most mobile molecular films known to date. Thi...A comprehensive understanding of the organic semiconductor material pentacene is meaningful for organic fieldeffect transistors (OFETs). Thin films of pentacene are the most mobile molecular films known to date. This paper reported that the pentacene sample was successfully synthesized. The purity of pentacene is up to 95%. The results of a joint experimental investigation based on a combination of infrared absorption spectra, mass spectra (MS), element analysis, x-ray diffraction (XRD) and atom force microscopy (AFM). The authors fabricated OFET with the synthesized pentacene. Its field effect mobility is about 1.23 cm^2/(V·s) and on-off ratio is above 10^6.展开更多
This paper investigates the morphology and crystallization properties of the two crystalline phases of pentacene grown by thermal evaporation on p^+-Si substrates at room temperature by the methods of atomic force mi...This paper investigates the morphology and crystallization properties of the two crystalline phases of pentacene grown by thermal evaporation on p^+-Si substrates at room temperature by the methods of atomic force microscopy and x-ray diffraction. This kind of substrate induces a thin film phase and a triclinic phase which are formed directly onto p^+-Si substrates and constitute a layer consisting of faceted grains with a step height between terraces of 15.8A(1A=0.1 nm) and 14.9A, respectively. Above the critical thickness of the thin film phase, lamellar structures are found with an increasing fraction with the increase of the film thickness. When the film thickness is fixed, the fraction of lamellar structures increases with the increase of annealing temperature. These lamellar structures are identified as the second phase with a interplanar distance of 14.9A corresponding to the pentacene triclinic phase. Furthermore, the thin film phase consisting of several micrometre sized uniformly oriented grains at an annealing temperature of less than 80℃ and a deposition rate of 0.6A/s is observed.展开更多
High performance pentacene organic thin film transistors (OTFT) were designed and fabricated using SiO2 deposited by electron beam evaporation as gate dielectric material. Pentacene thin films were prepared on glass...High performance pentacene organic thin film transistors (OTFT) were designed and fabricated using SiO2 deposited by electron beam evaporation as gate dielectric material. Pentacene thin films were prepared on glass substrate with S-D electrode pattern made from ITO by means of thermal evaporation through self-organized process. The threshold voltage VTH was -2.75±0.1V in 0-50V range, and that subthreshold slopes were 0.42±0.05V/dec. The field-effect mobility (μEF) of OTFT device increased with the increase of VDS, but the μEF of OTFT device increased and then decreased with increased VGS when VDS was kept constant. When VDS was -50V, on/off current ratio was 0.48×10^5 and subthreshold slope was 0.44V/dec. The μEF was 1.10cm^2/(V.s), threshold voltage was -2.71V for the OTFT device.展开更多
We introduced a dual electron accepting layer composed of tetrafluoro-tetracyanoquinodimethane (F4-TCNQ) and MoO3 for thermoelectric devices based on a pentacene layer. We found that the power factor is enhanced by ...We introduced a dual electron accepting layer composed of tetrafluoro-tetracyanoquinodimethane (F4-TCNQ) and MoO3 for thermoelectric devices based on a pentacene layer. We found that the power factor is enhanced by placing an F4-TCNQ layer directly in contact with the pentacene layer and it is also enhanced by placing a MoO3 layer between the F4-TCNQ layer and the Au electrode. By examining the contact resistance using a field effect transistor and a hole-only diode, we confirmed that the hole injection is improved due to the reduction of contact resistance at the interface between the MoO3 layer and the Au electrode.展开更多
Pentacene thin layers were deposited on Si with the native oxide at 80°C by remote-plasma-assisted deposition (RPAD) using hydrogen-plasma cell to supply atomic hydrogen radicals. The deposition rate was increase...Pentacene thin layers were deposited on Si with the native oxide at 80°C by remote-plasma-assisted deposition (RPAD) using hydrogen-plasma cell to supply atomic hydrogen radicals. The deposition rate was increased by RPAD comparing to that by non-excited hydrogen gas supply whereas thermal evaporation rate of pentacene from crucible was same in the both process. DFM and XRD studies showed the grain laterally grew in the thin film phase with the size above 10 μm by RPAD. First-principles molecular orbital calculations suggested pentacene is evaporated from crucible as the trimer or larger cluster but atomic hydrogen penetrated into the cluster enhances cracking of pentacene clusters to the monomer.展开更多
This study deals with electrical instability under bias stress in pentacene-based transistors with gate dielectrics deposited by a lamination process. Mylar film is laminated onto a polyethylene terephthalate (PET) su...This study deals with electrical instability under bias stress in pentacene-based transistors with gate dielectrics deposited by a lamination process. Mylar film is laminated onto a polyethylene terephthalate (PET) substrate, on which aluminum (Al) gate is deposited, followed by evaporation of organic semiconductor and gold (Au) source/drain contacts in bottom gate top contact configuration (Device 1). In order to compare the influence of the semiconductor/dielectric interface, a second organic transistor (Device 2) which is different from the Device 1 by the deposition of an intermediate layer of polymethyl methacrylate (PMMA) onto the laminated Mylar dielectric and before evaporating pentacene layer is fabricated. The critical device parameters such as threshold voltage (V<sub>T</sub>), subthreshold slope (S), mobility (μ), onset voltage (V<sub>on</sub>) and I<sub>on</sub>/I<sub>off</sub> ratio have been studied. The results showed that the recorded hysteresis depend on the pentacene morphology. Moreover, after bias stress application, the electrical parameters are highly modified for both devices according to the regimes in which the transistors are operating. In ON state regime, Device 1 showed a pronounced threshold voltage shift associated to charge trapping, while keeping the μ, I<sub>off</sub> current and S minimally affected. Regardless of whether Device 2 exhibited better electrical performances and stability in ON state, we observed a bias stress-induced increase of depletion current and subthreshold slope in subthreshold region, a sign of defect creation. Both devices showed onset voltage shift in opposite direction.展开更多
We chose pentacene as a hole injection layer(HIL) to fabricate the high performance blue fluorescent organic lightemitting devices(OLEDs). We found that the carrier mobility of the pentacene thin films could be ef...We chose pentacene as a hole injection layer(HIL) to fabricate the high performance blue fluorescent organic lightemitting devices(OLEDs). We found that the carrier mobility of the pentacene thin films could be efficiently improved after a critical annealing at temperature 120℃. Then we performed the tests of scanning electron microscopy, atomic force microscopy, and Kelvin probe to explore the effect of annealing on the pentacene films. The pentacene film exhibited a more crystalline form with better continuities and smoothness after annealing. The optimal device with 120℃ annealed pentacene film and n-doped electron transport layer(ETL) presents a low turn-on voltage of 2.6 V and a highest luminance of 134800 cd/m^2 at 12 V, which are reduced by 26% and improved by 50% compared with those of the control device.展开更多
Using pentacene as an active material, the organic thin film transistors were fabricated on Si3N4/p-Si substrates by using RF-magnetron sputtered amorphous aluminium as the gate electrode contact, and using highly dop...Using pentacene as an active material, the organic thin film transistors were fabricated on Si3N4/p-Si substrates by using RF-magnetron sputtered amorphous aluminium as the gate electrode contact, and using highly doped Si as the gate electrode and substrate with plasma-enhanced chemical vapor deposited (PECVD) silicon nitride as gate dielectric. Pentacene thin films were deposited by thermal evaporation on dielectrics as the active layer, then RF-magnetron sputtered amorphous aluminium was used as the source and drain contacts. Measurement results show that field effect mobility and threshold voltage are 0.043 cm2/(V·s) and 12.6 V, respectively, and on-off current ratio is nearly 1×103.展开更多
In this contribution, we report on the effect of pentacene thickness and temperature on the performance of top gate transistors. We first investigated the temperature dependence of the transport properties in the temp...In this contribution, we report on the effect of pentacene thickness and temperature on the performance of top gate transistors. We first investigated the temperature dependence of the transport properties in the temperature range of 258 K - 353 K. The electrical characteristics showed that the threshold voltage (VT) and the onset voltage (Von) remain unchanged. However, the subthreshold current (Ioff), the on-current (Ion) and the field effect mobility (μ) are highly affected with a slight deterioration of subthreshold slope. We observed Arrhenius-like behavior suggesting a thermally activated mobility with an activation energy EA = 68 meV. Moreover the dependence of the charge carrier mobility on the organic semiconductor thickness has also been studied. The mobility decreased as the pentacene thickness increases whereas the threshold voltage and Ioff current remain minimally affected. In order to understand the transport properties and in view to put in light morphology peculiarities of pentacene, AFM images were performed. It turns out that the pentacene grain sizes are smaller and disorganized as the film thickness increases, and charge carriers are more prone to be trapped, leading to decrease the field effect mobility and the Ion current. The devices were also tested under bias stress and the transistors with low thicknesses exhibited a relatively good electrical stability compared to those with high pentacene thicknesses. This work points out the influence of temperature, semiconductor thickness and bias stress effect on the device performance and stability of transistor using top gate configuration.展开更多
In this contribution, we report on the effect of solvents with different boiling points and annealing temperature on the performance of TIPS-pentacene transistors. Several solvents have been used for TIPS-pentacene th...In this contribution, we report on the effect of solvents with different boiling points and annealing temperature on the performance of TIPS-pentacene transistors. Several solvents have been used for TIPS-pentacene thin film processing: toluene, chlorobenzene and tetrahy-drofuran. To study the influence of solvent and temperature;the electrical parameters of TIPS-pentacene field effect transistor were measured. The highest values of mobilities were 7.1 × 10-3 cm2·V-1·s-1, 4.5 × 10-3?cm2·V-1·s-1 and 1.43 × 10-3 cm2·V-1·s-1 respectively for TIPS-pentacene field effect transistor using chlorobenzene, toluene and tetrahydrofuran and annealed respectively at 120°C, 150°C and 120°C. We have correlated these electrical performances with AFM images in order to point out the role of morphological properties. It is found that the grain size, and roughness highly affect the electrical parameters.展开更多
This study investigates the carrier transport of heterojunction channel in oxide semiconductor thin-film transistor(TFT)using the elevated-metal metal-oxide(EMMO)architecture and indium−zinc oxide(InZnO).The heterojun...This study investigates the carrier transport of heterojunction channel in oxide semiconductor thin-film transistor(TFT)using the elevated-metal metal-oxide(EMMO)architecture and indium−zinc oxide(InZnO).The heterojunction band diagram of InZnO bilayer was modified by the cation composition to form the two-dimensional electron gas(2DEG)at the interface quantum well,as verified using a metal−insulator−semiconductor(MIS)device.Although the 2DEG indeed contributes to a higher mobility than the monolayer channel,the competition and cooperation between the gate field and the built-in field strongly affect such mobility-boosting effect,originating from the carrier inelastic collision at the heterojunction interface and the gate field-induced suppression of quantum well.Benefited from the proper energy-band engineering,a high mobility of 84.3 cm2·V^(−1)·s^(−1),a decent threshold voltage(V_(th))of−6.5 V,and a steep subthreshold swing(SS)of 0.29 V/dec were obtained in InZnO-based heterojunction TFT.展开更多
Industrial thin-film composite(TFC)membranes achieve superior gas separation properties from high-performance selective layer materials,while the success of membrane technology relies on high-performance gutter layers...Industrial thin-film composite(TFC)membranes achieve superior gas separation properties from high-performance selective layer materials,while the success of membrane technology relies on high-performance gutter layers to achieve production scalability and low-cost manufacturing.However,the current literature predominantly focuses on the design of polymer architectures to obtain high permeability and selectivity,while the art of fabricating gutter layers is usually safeguarded by industrial manufacturers and appears lackluster to academic researchers.This is the first report aiming to provide a comprehensive and critical review of state-of-the-art gutter layer materials and their design and modification to enable TFC membranes with superior separation performance.We first elucidate the importance of the gutter layer on membrane performance through modeling and experimental results.Then various gutter layer materials used to obtain high-performance composite membranes are critically reviewed,and the strategies to improve their compatibility with the selective layer are highlighted,such as oxygen plasma treatment,polydopamine deposition,and surface grafting.Finally,we present the opportunities of the gutter layer design for practical applications.展开更多
Manufacturing thin-film components is crucial for achieving high-efficiency and high-power thermal batteries(TBs).However,developing binders with low-gas production at the operating temperature range of TBs(400-550...Manufacturing thin-film components is crucial for achieving high-efficiency and high-power thermal batteries(TBs).However,developing binders with low-gas production at the operating temperature range of TBs(400-550°C)has proven to be a significant challenge.Here,we report the use of acrylic acid derivative terpolymer(LA136D)as a low-volatile binder for thin-film cathode fabrication and studied the chain scission and chemical bondbreaking mechanisms in pyrolysis.It is shown LA136D defers to randomchain scission and cross-linking chain scission mechanisms,which gifts it with a low proportion of volatile products(ψ,ψ=39.2 wt%)at even up to 550°C,well below those of the conventional PVDF(77.6 wt%)and SBR(99.2 wt%)binders.Surprisingly,LA136D contributes to constructing a thermal shock-resistant cathode due to the step-by-step bond-breaking process.This is beneficial for the overall performance of TBs.In discharging test,the thin-film cathodes exhibited a remarkable 440%reduction in polarization and 300%enhancement in the utilization efficiency of cathode materials,while with just a slight increase of 0.05 MPa in gas pressure compared with traditional“thick-film”cathode.Our work highlights the potential of LA136D as a low-volatile binder for thin-film cathodes and shows the feasibility of manufacturing high-efficiency and high-power TBs through polymer molecule engineering.展开更多
In-Ga-Zn-O(IGZO) channel based thin-film transistors(TFT), which exhibit high on-off current ratio and relatively high mobility, has been widely researched due to its back end of line(BEOL)-compatible potential for th...In-Ga-Zn-O(IGZO) channel based thin-film transistors(TFT), which exhibit high on-off current ratio and relatively high mobility, has been widely researched due to its back end of line(BEOL)-compatible potential for the next generation dynamic random access memory(DRAM) application. In this work, thermal atomic layer deposition(TALD) indium gallium zinc oxide(IGZO) technology was explored. It was found that the atomic composition and the physical properties of the IGZO films can be modulated by changing the sub-cycles number during atomic layer deposition(ALD) process. In addition, thin-film transistors(TFTs) with vertical channel-all-around(CAA) structure were realized to explore the influence of different IGZO films as channel layers on the performance of transistors. Our research demonstrates that TALD is crucial for high density integration technology, and the proposed vertical IGZO CAA-TFT provides a feasible path to break through the technical problems for the continuous scale of electronic equipment.展开更多
The flow field and flow state of thin-film evaporators are complex,and it is significant to effectively divide and quantify the flow field and flow state,as well as to study the internal flow field distribution and ma...The flow field and flow state of thin-film evaporators are complex,and it is significant to effectively divide and quantify the flow field and flow state,as well as to study the internal flow field distribution and material mixing characteristics to improve the efficiency of thin-film evaporators.By using computational fluid dynamics(CFD)numerical simulation,the distribution pattern of the high-viscosity fluid flow field in the thin-film evaporators was obtained.It was found that the staggered interrupted blades could greatly promote material mixing and transportation,and impact the film formation of high-viscosity materials on the evaporator wall.Furthermore,a flow field state recognition method based on radial volume fraction statistics was proposed,and could quantitatively describe the internal flow field of thin-film evaporators.The method divides the high-viscosity materials in the thin-film evaporators into three flow states,the liquid film state,the exchange state and the liquid mass state.The three states of materials could be quantitatively described.The results show that the materials in the exchange state can connect the liquid film and the liquid mass,complete the material mixing and exchange,renew the liquid film,and maintain continuous and efficient liquid film evaporation.展开更多
基金Supported by the State Key Development Program for Basic Research of China (2003CB716204) The Education Department for International Cooperation (2006029501)
文摘Based on density functional theory (DFT) calculations, we investigate the spin-related properties of spinless-hole injected organic molecule pentacene (Pc). DFT calculations reveal that there is spontaneous spin polarization in Pc when spinless-hole is injected. The chargeinduced magnetic moment of Pc increases linearly with the increasing of the extra hole charge amount and its maximum can be up to 1 μB per injected spinless-hole per Pc molecule. The magnetic moment is expected due to the injected unpaired charge. The injected hole will preferably ll the spin-splitted carbon pz orbitals, which makes the Pc molecule spin polarize.
基金Project supported by the National Natural Science Foundation of China (Grant No 60676033)
文摘A comprehensive understanding of the organic semiconductor material pentacene is meaningful for organic fieldeffect transistors (OFETs). Thin films of pentacene are the most mobile molecular films known to date. This paper reported that the pentacene sample was successfully synthesized. The purity of pentacene is up to 95%. The results of a joint experimental investigation based on a combination of infrared absorption spectra, mass spectra (MS), element analysis, x-ray diffraction (XRD) and atom force microscopy (AFM). The authors fabricated OFET with the synthesized pentacene. Its field effect mobility is about 1.23 cm^2/(V·s) and on-off ratio is above 10^6.
基金Project supported by the National High Technology Research and Development Program (863 plan) of China (Grant No2006AA03Z0412)the National Natural Science Foundation of China (Grant Nos 60576016 and 10774013)+4 种基金the Excellent Doctor’s Science and Technology Innovation Foundation of Beijing Jiaotong University (Grant No 48024)The Research Fund forthe Youth Scholars of the Doctoral Program of Higher Education (Grant No 20070004031)the Beijing NOVA program (GrantNo 2007A024)the Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministrythe Foundation of Beijing Jiaotong University (Grant No 2005SM057)
文摘This paper investigates the morphology and crystallization properties of the two crystalline phases of pentacene grown by thermal evaporation on p^+-Si substrates at room temperature by the methods of atomic force microscopy and x-ray diffraction. This kind of substrate induces a thin film phase and a triclinic phase which are formed directly onto p^+-Si substrates and constitute a layer consisting of faceted grains with a step height between terraces of 15.8A(1A=0.1 nm) and 14.9A, respectively. Above the critical thickness of the thin film phase, lamellar structures are found with an increasing fraction with the increase of the film thickness. When the film thickness is fixed, the fraction of lamellar structures increases with the increase of annealing temperature. These lamellar structures are identified as the second phase with a interplanar distance of 14.9A corresponding to the pentacene triclinic phase. Furthermore, the thin film phase consisting of several micrometre sized uniformly oriented grains at an annealing temperature of less than 80℃ and a deposition rate of 0.6A/s is observed.
基金supported by the National Natural Science Foundation of China (Grant No 60576016)the National High Technology Research and Development Program of China (Grant No 2006AA03Z0412)+3 种基金the Beijing Natural Science Foundation of China (Grant No 2073030)the National Grand Fundamental Research 973 Program of China (Grant No 2003CB314707)the National Natural Science Foundation of China (Grant No 10434030)the Excellent Doctor's Science and Technology Innovation Foundation of Beijing Jiaotong University of China (Grant No 48024)
文摘High performance pentacene organic thin film transistors (OTFT) were designed and fabricated using SiO2 deposited by electron beam evaporation as gate dielectric material. Pentacene thin films were prepared on glass substrate with S-D electrode pattern made from ITO by means of thermal evaporation through self-organized process. The threshold voltage VTH was -2.75±0.1V in 0-50V range, and that subthreshold slopes were 0.42±0.05V/dec. The field-effect mobility (μEF) of OTFT device increased with the increase of VDS, but the μEF of OTFT device increased and then decreased with increased VGS when VDS was kept constant. When VDS was -50V, on/off current ratio was 0.48×10^5 and subthreshold slope was 0.44V/dec. The μEF was 1.10cm^2/(V.s), threshold voltage was -2.71V for the OTFT device.
基金supported by the New Energy and Industrial Technology Development Organization(NEDO)the Funding Program for World-Leading Innovative R&D on Science and Technology(FIRST)the International Institute for Carbon Neutral Energy Research(WPI-I2CNER)sponsored by MEXT
文摘We introduced a dual electron accepting layer composed of tetrafluoro-tetracyanoquinodimethane (F4-TCNQ) and MoO3 for thermoelectric devices based on a pentacene layer. We found that the power factor is enhanced by placing an F4-TCNQ layer directly in contact with the pentacene layer and it is also enhanced by placing a MoO3 layer between the F4-TCNQ layer and the Au electrode. By examining the contact resistance using a field effect transistor and a hole-only diode, we confirmed that the hole injection is improved due to the reduction of contact resistance at the interface between the MoO3 layer and the Au electrode.
文摘Pentacene thin layers were deposited on Si with the native oxide at 80°C by remote-plasma-assisted deposition (RPAD) using hydrogen-plasma cell to supply atomic hydrogen radicals. The deposition rate was increased by RPAD comparing to that by non-excited hydrogen gas supply whereas thermal evaporation rate of pentacene from crucible was same in the both process. DFM and XRD studies showed the grain laterally grew in the thin film phase with the size above 10 μm by RPAD. First-principles molecular orbital calculations suggested pentacene is evaporated from crucible as the trimer or larger cluster but atomic hydrogen penetrated into the cluster enhances cracking of pentacene clusters to the monomer.
文摘This study deals with electrical instability under bias stress in pentacene-based transistors with gate dielectrics deposited by a lamination process. Mylar film is laminated onto a polyethylene terephthalate (PET) substrate, on which aluminum (Al) gate is deposited, followed by evaporation of organic semiconductor and gold (Au) source/drain contacts in bottom gate top contact configuration (Device 1). In order to compare the influence of the semiconductor/dielectric interface, a second organic transistor (Device 2) which is different from the Device 1 by the deposition of an intermediate layer of polymethyl methacrylate (PMMA) onto the laminated Mylar dielectric and before evaporating pentacene layer is fabricated. The critical device parameters such as threshold voltage (V<sub>T</sub>), subthreshold slope (S), mobility (μ), onset voltage (V<sub>on</sub>) and I<sub>on</sub>/I<sub>off</sub> ratio have been studied. The results showed that the recorded hysteresis depend on the pentacene morphology. Moreover, after bias stress application, the electrical parameters are highly modified for both devices according to the regimes in which the transistors are operating. In ON state regime, Device 1 showed a pronounced threshold voltage shift associated to charge trapping, while keeping the μ, I<sub>off</sub> current and S minimally affected. Regardless of whether Device 2 exhibited better electrical performances and stability in ON state, we observed a bias stress-induced increase of depletion current and subthreshold slope in subthreshold region, a sign of defect creation. Both devices showed onset voltage shift in opposite direction.
基金Project supported by the National Natural Science Foundation of China(Grant No.60906022)the Natural Science Foundation of Tianjin,China(Grant No.10JCYBJC01100)+1 种基金the Key Science and Technology Support Program of Tianjin,China(Grant No.14ZCZDGX00006)the National High Technology Research and Development Program of China(Grant No.2013AA014201)
文摘We chose pentacene as a hole injection layer(HIL) to fabricate the high performance blue fluorescent organic lightemitting devices(OLEDs). We found that the carrier mobility of the pentacene thin films could be efficiently improved after a critical annealing at temperature 120℃. Then we performed the tests of scanning electron microscopy, atomic force microscopy, and Kelvin probe to explore the effect of annealing on the pentacene films. The pentacene film exhibited a more crystalline form with better continuities and smoothness after annealing. The optimal device with 120℃ annealed pentacene film and n-doped electron transport layer(ETL) presents a low turn-on voltage of 2.6 V and a highest luminance of 134800 cd/m^2 at 12 V, which are reduced by 26% and improved by 50% compared with those of the control device.
文摘Using pentacene as an active material, the organic thin film transistors were fabricated on Si3N4/p-Si substrates by using RF-magnetron sputtered amorphous aluminium as the gate electrode contact, and using highly doped Si as the gate electrode and substrate with plasma-enhanced chemical vapor deposited (PECVD) silicon nitride as gate dielectric. Pentacene thin films were deposited by thermal evaporation on dielectrics as the active layer, then RF-magnetron sputtered amorphous aluminium was used as the source and drain contacts. Measurement results show that field effect mobility and threshold voltage are 0.043 cm2/(V·s) and 12.6 V, respectively, and on-off current ratio is nearly 1×103.
基金the FIRST(Fonds d’Impulsion pour la Recherche Scientifique et Technique)programCEA-MITIC(Centre d’excellence en Mathematiques,Informatique et TIC)for financial support.
文摘In this contribution, we report on the effect of pentacene thickness and temperature on the performance of top gate transistors. We first investigated the temperature dependence of the transport properties in the temperature range of 258 K - 353 K. The electrical characteristics showed that the threshold voltage (VT) and the onset voltage (Von) remain unchanged. However, the subthreshold current (Ioff), the on-current (Ion) and the field effect mobility (μ) are highly affected with a slight deterioration of subthreshold slope. We observed Arrhenius-like behavior suggesting a thermally activated mobility with an activation energy EA = 68 meV. Moreover the dependence of the charge carrier mobility on the organic semiconductor thickness has also been studied. The mobility decreased as the pentacene thickness increases whereas the threshold voltage and Ioff current remain minimally affected. In order to understand the transport properties and in view to put in light morphology peculiarities of pentacene, AFM images were performed. It turns out that the pentacene grain sizes are smaller and disorganized as the film thickness increases, and charge carriers are more prone to be trapped, leading to decrease the field effect mobility and the Ion current. The devices were also tested under bias stress and the transistors with low thicknesses exhibited a relatively good electrical stability compared to those with high pentacene thicknesses. This work points out the influence of temperature, semiconductor thickness and bias stress effect on the device performance and stability of transistor using top gate configuration.
文摘In this contribution, we report on the effect of solvents with different boiling points and annealing temperature on the performance of TIPS-pentacene transistors. Several solvents have been used for TIPS-pentacene thin film processing: toluene, chlorobenzene and tetrahy-drofuran. To study the influence of solvent and temperature;the electrical parameters of TIPS-pentacene field effect transistor were measured. The highest values of mobilities were 7.1 × 10-3 cm2·V-1·s-1, 4.5 × 10-3?cm2·V-1·s-1 and 1.43 × 10-3 cm2·V-1·s-1 respectively for TIPS-pentacene field effect transistor using chlorobenzene, toluene and tetrahydrofuran and annealed respectively at 120°C, 150°C and 120°C. We have correlated these electrical performances with AFM images in order to point out the role of morphological properties. It is found that the grain size, and roughness highly affect the electrical parameters.
基金supported by National Key Research and Development Program(2021YFB3600802)Shenzhen Municipal Scientific Program(JSGG20220831103803007,SGDX20211123145404006)Guangdong Basic and Applied Basic Research Foundation(2022A1515110029)
文摘This study investigates the carrier transport of heterojunction channel in oxide semiconductor thin-film transistor(TFT)using the elevated-metal metal-oxide(EMMO)architecture and indium−zinc oxide(InZnO).The heterojunction band diagram of InZnO bilayer was modified by the cation composition to form the two-dimensional electron gas(2DEG)at the interface quantum well,as verified using a metal−insulator−semiconductor(MIS)device.Although the 2DEG indeed contributes to a higher mobility than the monolayer channel,the competition and cooperation between the gate field and the built-in field strongly affect such mobility-boosting effect,originating from the carrier inelastic collision at the heterojunction interface and the gate field-induced suppression of quantum well.Benefited from the proper energy-band engineering,a high mobility of 84.3 cm2·V^(−1)·s^(−1),a decent threshold voltage(V_(th))of−6.5 V,and a steep subthreshold swing(SS)of 0.29 V/dec were obtained in InZnO-based heterojunction TFT.
基金support from the U.S.Department of Energy National Energy Technology Laboratory(DE-FE0031736)the New York State Foundation for Science,Technology and Innovation(NYSTAR).
文摘Industrial thin-film composite(TFC)membranes achieve superior gas separation properties from high-performance selective layer materials,while the success of membrane technology relies on high-performance gutter layers to achieve production scalability and low-cost manufacturing.However,the current literature predominantly focuses on the design of polymer architectures to obtain high permeability and selectivity,while the art of fabricating gutter layers is usually safeguarded by industrial manufacturers and appears lackluster to academic researchers.This is the first report aiming to provide a comprehensive and critical review of state-of-the-art gutter layer materials and their design and modification to enable TFC membranes with superior separation performance.We first elucidate the importance of the gutter layer on membrane performance through modeling and experimental results.Then various gutter layer materials used to obtain high-performance composite membranes are critically reviewed,and the strategies to improve their compatibility with the selective layer are highlighted,such as oxygen plasma treatment,polydopamine deposition,and surface grafting.Finally,we present the opportunities of the gutter layer design for practical applications.
基金the support from the China Academy of Engineering Physicsthe National Natural Science Foundation of China(NSFC-No.52102319,12104422,U1930208)
文摘Manufacturing thin-film components is crucial for achieving high-efficiency and high-power thermal batteries(TBs).However,developing binders with low-gas production at the operating temperature range of TBs(400-550°C)has proven to be a significant challenge.Here,we report the use of acrylic acid derivative terpolymer(LA136D)as a low-volatile binder for thin-film cathode fabrication and studied the chain scission and chemical bondbreaking mechanisms in pyrolysis.It is shown LA136D defers to randomchain scission and cross-linking chain scission mechanisms,which gifts it with a low proportion of volatile products(ψ,ψ=39.2 wt%)at even up to 550°C,well below those of the conventional PVDF(77.6 wt%)and SBR(99.2 wt%)binders.Surprisingly,LA136D contributes to constructing a thermal shock-resistant cathode due to the step-by-step bond-breaking process.This is beneficial for the overall performance of TBs.In discharging test,the thin-film cathodes exhibited a remarkable 440%reduction in polarization and 300%enhancement in the utilization efficiency of cathode materials,while with just a slight increase of 0.05 MPa in gas pressure compared with traditional“thick-film”cathode.Our work highlights the potential of LA136D as a low-volatile binder for thin-film cathodes and shows the feasibility of manufacturing high-efficiency and high-power TBs through polymer molecule engineering.
基金funded in part by the National Key R&D Program of China(Grant No.2022YFB3606900)in part by the National Natural Science of China(Grant No.62004217)。
文摘In-Ga-Zn-O(IGZO) channel based thin-film transistors(TFT), which exhibit high on-off current ratio and relatively high mobility, has been widely researched due to its back end of line(BEOL)-compatible potential for the next generation dynamic random access memory(DRAM) application. In this work, thermal atomic layer deposition(TALD) indium gallium zinc oxide(IGZO) technology was explored. It was found that the atomic composition and the physical properties of the IGZO films can be modulated by changing the sub-cycles number during atomic layer deposition(ALD) process. In addition, thin-film transistors(TFTs) with vertical channel-all-around(CAA) structure were realized to explore the influence of different IGZO films as channel layers on the performance of transistors. Our research demonstrates that TALD is crucial for high density integration technology, and the proposed vertical IGZO CAA-TFT provides a feasible path to break through the technical problems for the continuous scale of electronic equipment.
基金National Natural Science Foundation of China(Nos.51905089 and 52075093)Special Fund for Basic Research and Operating Costs of Central Colleges and Universities,China(No.22320D-31)Open Fund for National Key Laboratory of Tribology of Tsinghua University,China(No.SKLTKF20B05)。
文摘The flow field and flow state of thin-film evaporators are complex,and it is significant to effectively divide and quantify the flow field and flow state,as well as to study the internal flow field distribution and material mixing characteristics to improve the efficiency of thin-film evaporators.By using computational fluid dynamics(CFD)numerical simulation,the distribution pattern of the high-viscosity fluid flow field in the thin-film evaporators was obtained.It was found that the staggered interrupted blades could greatly promote material mixing and transportation,and impact the film formation of high-viscosity materials on the evaporator wall.Furthermore,a flow field state recognition method based on radial volume fraction statistics was proposed,and could quantitatively describe the internal flow field of thin-film evaporators.The method divides the high-viscosity materials in the thin-film evaporators into three flow states,the liquid film state,the exchange state and the liquid mass state.The three states of materials could be quantitatively described.The results show that the materials in the exchange state can connect the liquid film and the liquid mass,complete the material mixing and exchange,renew the liquid film,and maintain continuous and efficient liquid film evaporation.