期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Design of elliptical underwater acoustic cloak with truss-latticed pentamode materials
1
作者 Yuanyuan Ge Xiaoning Liu Gengkai Hu 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2022年第4期221-226,共6页
Pentamode acoustic cloak is promising for underwater sound control due to its solid nature and broadband efficiency,however its realization is only limited to simple cylindrical shape.In this work,we established a set... Pentamode acoustic cloak is promising for underwater sound control due to its solid nature and broadband efficiency,however its realization is only limited to simple cylindrical shape.In this work,we established a set of techniques for the microstructure design of elliptical pentamode acoustic cloak based on truss lattice model,including the inverse design of unit cell and algorithms for latticed cloak assembly.The designed cloak was numerically validated by the well wave concealing performance.The work proves that more general pentamode acoustic wave devices beyond simple cylindrical geometry are theoretically feasible,and sheds light on more practical design for waterborne sound manipulation. 展开更多
关键词 Elliptical acoustic cloak pentamode material Microstructure design Truss lattice
下载PDF
Underwater Directional Acoustic Source Based on Pentamode Material
2
作者 Binghao Zhao Peng Wang +1 位作者 Dongwei Wang Gengkai Hu 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2024年第1期1-9,共9页
An underwater directional acoustic emitter is conceived with a highly anisotropic lattice material,whose acoustic characteristics manifest strong dependence on the orientation of the lattice material’s principal axis... An underwater directional acoustic emitter is conceived with a highly anisotropic lattice material,whose acoustic characteristics manifest strong dependence on the orientation of the lattice material’s principal axis.Exploiting these features,a cylindrical structure made of such anisotropic lattice material is engineered to possess distinct impedance values in different directions,thereby facilitating wave emission along the principal axis while inducing reflection in other directions.Notably,through numerical simulations,it is demonstrated that the emission direction can be effectively manipulated by adjusting the principal axis orientation,concurrently enhancing the emitted power.In contrast to previous directional acoustic structures,the compact emitter presented in this study can get rid of the size-wavelength constraint,enabling effective control of low-frequency waves. 展开更多
关键词 UNDERWATER Directional emission pentamode material Broadband frequency
原文传递
Scattering Analysis and Optimization of Spherical Acoustic Cloak with Unideal Pentamode Material 被引量:1
3
作者 Xin Nie Yi Chen Xiaoning Liu 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2020年第3期347-360,共14页
The acoustic scattering is theoretically studied in this paper for three-dimensional spherical cloak composed of unideal pentamode material,for which small shear rigidity is always inevitable for a real designed micro... The acoustic scattering is theoretically studied in this paper for three-dimensional spherical cloak composed of unideal pentamode material,for which small shear rigidity is always inevitable for a real designed microstructure.A theoretical formulation is developed to efficiently evaluate the cloaking performance.The generic scattering feature of the cloak and the efTects of material imperfectness and inner cloak boundary constraints are systematically examined.The preferable constraint type and the critical imperfectness parameter of the material are identified for possible broadband invisibility.In addition,a very practical lining shell scheme is proposed to tune the constraint strength on the inner boundary.By combining the theoretical model with optimization algorithm,it is further proved that the cloak can be reduced by several piecewiseuniform layers and optimized to achieve excellent invisibility in targeted frequency bands.The study will provide valuable guidance for the future microstructural design of cloaks. 展开更多
关键词 pentamode material Spherical acoustic cloak Scattering calculation Boundary effect Optimization
原文传递
Effects of Structural Parameters on the Poisson’s Ratio and Compressive Modulus of 2D Pentamode Structures Fabricated by Selective Laser Melting 被引量:4
4
作者 Lei Zhang Bo Song +5 位作者 Ruijie Liu Aiguo Zhao Jinliang Zhang Linrong Zhuo Guiping Tang Yusheng Shi 《Engineering》 SCIE EI 2020年第1期56-67,共12页
Metamaterials have been receiving an increasing amount of interest in recent years. As a type of metamaterial, pentamode materials (PMs) approximate the elastic properties of liquids. In this study, a finite-element a... Metamaterials have been receiving an increasing amount of interest in recent years. As a type of metamaterial, pentamode materials (PMs) approximate the elastic properties of liquids. In this study, a finite-element analysis was conducted to predict the mechanical properties of PM structures by altering the thin wall thicknesses and layer numbers to obtain an outstanding load-bearing capacity. It was found that as the thin wall thickness increased from 0.15 to 0.45 mm, the compressive modulus of the PM structures increased and the Poisson’s ratio decreased. As the layer number increased, the Poisson’s ratio of the PM structures increased rapidly and reaches a stable value ranging from 0.50 to 0.55. Simulation results of the stress distribution in the PM structures confirmed that stress concentrations exist at the junctions of the thin walls and weights. For validation, Ti–6Al–4V specimens were fabricated by selective laser melting (SLM), and the mechanical properties of these specimens (i.e., Poisson’s ratio and elastic modulus) were experimentally studied. Good consistency was achieved between the numerical and experimental results. This work is beneficial for the design and development of PM structures with simultaneous load-bearing capacity and pentamodal properties. 展开更多
关键词 METAmaterialS pentamode materials Finite-element analysis Selective laser melting
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部