Low pH is a major limiting factor for the production of black pepper (Piper nigrum L.) in Hainan province. Black pepper gardens often exhibit a decrease in soil pH (to 5.5 - 5.0) on orchards with a multi-year producti...Low pH is a major limiting factor for the production of black pepper (Piper nigrum L.) in Hainan province. Black pepper gardens often exhibit a decrease in soil pH (to 5.5 - 5.0) on orchards with a multi-year production history. An exploratory hydroponic experiment was conducted to examine the effects of increasingly acid nutrient solution pH (7.0, 5.5, 4.0, and 3.5) on seedling growth, tissue nutrient concentrations and root morphological traits. The results indicated that low pH may directly inhibit root development and function, limit K, Ca and Mg absorption and reduce seedling growth. At pH 5.5, black pepper attained maximum growth, while the minimum growth occurred at pH 3.5. It can be concluded that low pH reduces plant growth and is associated with low root nutrient concentrations of Ca and Mg, which may explain the decline of the yield in the seven pepper gardens of the Institute.展开更多
Pepper (Capsicum annuum. L.) is a widely cultivated vegetable crop worldwide and has the second largest planting area and the first largest vegetable output and value in China. Pepper root-knot nematode (Meloidogyn...Pepper (Capsicum annuum. L.) is a widely cultivated vegetable crop worldwide and has the second largest planting area and the first largest vegetable output and value in China. Pepper root-knot nematode (Meloidogyne spp.) is one of the most serious pests of pepper, which caused huge losses every year. Previous studies showed that the Me3 gene is resistant to a wide range of Meloidogyne species, including M. arenaria, M. javanica, and M. incognita. HDA149, a double haploid pepper genotype, harboring the root-knot nematode resistance gene Me3, was used to construct bacterial artificial chro- mosome library (BAC) via the vector of CopyControFM pCC1 in this study. The library consists of 210 200 BAC clones and is equivalent to 5.3 pepper genomes. The average insert size is 95 kb, and most of them are 90-120 kb; but the empty clones are less than 3%. In order to screen the BAC library easily, 550 super pools with 384 BAC clones of each pool were further developed in this study. Specific primers from Me3 gene locus were used for BAC library screening, and more than 20 positive BAC clones were obtained. Then the selected positive BAC clones were analyzed by restriction enzyme digestion, BAC-end sequencing, marker development, and new positive BAC clones exploration, respectively. Finally, the contig with total length of about 300 kb linked to the Me3 locus was constructed based on chromosome walking strategy, which made a solid foundation for the cloning of the important root-knot nematode resistance gene Me3.展开更多
A mixture of six Georgia isolates of Phytophthora capsici (Leon.), the causal agent of phytophthora blight, were used for greenhouse mass screening of over 700 accessions of Capsicum annuum for both stem blight and fo...A mixture of six Georgia isolates of Phytophthora capsici (Leon.), the causal agent of phytophthora blight, were used for greenhouse mass screening of over 700 accessions of Capsicum annuum for both stem blight and foliar blight. From this screening, it was determined that resistance to both forms of the disease were relatively common in the germplasm, but resistance to one form of the disease was not strongly correlated to resistance to the other form. Ten accessions previously shown to possess root rot resistance were tested for resistance to stem rot and leaf blight, and were found to also be highly resistant to these forms of the disease. It appears that single accessions have resistance to foliar, stem and root rot caused by P. capsici, which may simplify breeding for resistance to all three forms of the disease.展开更多
Greenhouse studies were performed to determine the reactions of 10 “California Wonder” (Capsicum annuum) accessions to the three forms of Phytophthora blight (root rot, stem blight and foliar blight) caused by Phyto...Greenhouse studies were performed to determine the reactions of 10 “California Wonder” (Capsicum annuum) accessions to the three forms of Phytophthora blight (root rot, stem blight and foliar blight) caused by Phytophthora capsici. Differences in root rot, stem blight and foliar blight severities among accessions were significant. The accessions consistently differentiated into two groups across the three disease syndromes. Simple sequence repeat (SSR) markers showed variability both within and between accessions of California Wonder. The variability in the responses to the three forms of Phytophthora blight does not warrant its usefulness as a standard susceptible control in studies involving the Capsicum-P. capsici patho-system.展开更多
文摘Low pH is a major limiting factor for the production of black pepper (Piper nigrum L.) in Hainan province. Black pepper gardens often exhibit a decrease in soil pH (to 5.5 - 5.0) on orchards with a multi-year production history. An exploratory hydroponic experiment was conducted to examine the effects of increasingly acid nutrient solution pH (7.0, 5.5, 4.0, and 3.5) on seedling growth, tissue nutrient concentrations and root morphological traits. The results indicated that low pH may directly inhibit root development and function, limit K, Ca and Mg absorption and reduce seedling growth. At pH 5.5, black pepper attained maximum growth, while the minimum growth occurred at pH 3.5. It can be concluded that low pH reduces plant growth and is associated with low root nutrient concentrations of Ca and Mg, which may explain the decline of the yield in the seven pepper gardens of the Institute.
基金supported by the National High-Tech R&D Program in China (2013AA102603)the Natural Science Foundation of Shandong Province,China (ZR2014YL014)+3 种基金the Youth Scientific Research Foundation of Shandong Academy of Agricultural Sciences,China (2014QNZ03)the Taishan Scholars Program of Shandong Province,China (2016-2020)the National Natural Science Foundation of China (31101425)Prof. Alain Palloxin,French National Institute for Agricultural Research (INRA),for kindly providing the pepper genotype HDA149
文摘Pepper (Capsicum annuum. L.) is a widely cultivated vegetable crop worldwide and has the second largest planting area and the first largest vegetable output and value in China. Pepper root-knot nematode (Meloidogyne spp.) is one of the most serious pests of pepper, which caused huge losses every year. Previous studies showed that the Me3 gene is resistant to a wide range of Meloidogyne species, including M. arenaria, M. javanica, and M. incognita. HDA149, a double haploid pepper genotype, harboring the root-knot nematode resistance gene Me3, was used to construct bacterial artificial chro- mosome library (BAC) via the vector of CopyControFM pCC1 in this study. The library consists of 210 200 BAC clones and is equivalent to 5.3 pepper genomes. The average insert size is 95 kb, and most of them are 90-120 kb; but the empty clones are less than 3%. In order to screen the BAC library easily, 550 super pools with 384 BAC clones of each pool were further developed in this study. Specific primers from Me3 gene locus were used for BAC library screening, and more than 20 positive BAC clones were obtained. Then the selected positive BAC clones were analyzed by restriction enzyme digestion, BAC-end sequencing, marker development, and new positive BAC clones exploration, respectively. Finally, the contig with total length of about 300 kb linked to the Me3 locus was constructed based on chromosome walking strategy, which made a solid foundation for the cloning of the important root-knot nematode resistance gene Me3.
文摘A mixture of six Georgia isolates of Phytophthora capsici (Leon.), the causal agent of phytophthora blight, were used for greenhouse mass screening of over 700 accessions of Capsicum annuum for both stem blight and foliar blight. From this screening, it was determined that resistance to both forms of the disease were relatively common in the germplasm, but resistance to one form of the disease was not strongly correlated to resistance to the other form. Ten accessions previously shown to possess root rot resistance were tested for resistance to stem rot and leaf blight, and were found to also be highly resistant to these forms of the disease. It appears that single accessions have resistance to foliar, stem and root rot caused by P. capsici, which may simplify breeding for resistance to all three forms of the disease.
文摘Greenhouse studies were performed to determine the reactions of 10 “California Wonder” (Capsicum annuum) accessions to the three forms of Phytophthora blight (root rot, stem blight and foliar blight) caused by Phytophthora capsici. Differences in root rot, stem blight and foliar blight severities among accessions were significant. The accessions consistently differentiated into two groups across the three disease syndromes. Simple sequence repeat (SSR) markers showed variability both within and between accessions of California Wonder. The variability in the responses to the three forms of Phytophthora blight does not warrant its usefulness as a standard susceptible control in studies involving the Capsicum-P. capsici patho-system.