期刊文献+
共找到26,665篇文章
< 1 2 250 >
每页显示 20 50 100
Apatinib and gamabufotalin co-loaded lipid/Prussian blue nanoparticles for synergistic therapy to gastric cancer with metastasis 被引量:1
1
作者 Binlong Chen Yanzhong Zhao +5 位作者 Zichang Lin Jiahao Liang Jialong Fan Yanyan Huang Leye He Bin Liu 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第5期707-721,共15页
Due to the non-targeted release and low solubility of anti-gastric cancer agent,apatinib(Apa),a first-line drug with long-term usage in a high dosage often induces multi-drug resistance and causes serious side effects... Due to the non-targeted release and low solubility of anti-gastric cancer agent,apatinib(Apa),a first-line drug with long-term usage in a high dosage often induces multi-drug resistance and causes serious side effects.In order to avoid these drawbacks,lipid-film-coated Prussian blue nanoparticles(PB NPs)with hyaluronan(HA)modification was used for Apa loading to improve its solubility and targeting ability.Furthermore,anti-tumor compound of gamabufotalin(CS-6)was selected as a partner of Apawith reducing dosage for combinational gastric therapy.Thus,HA-Apa-Lip@PB-CS-6 NPs were constructed to synchronously transport the two drugs into tumor tissue.In vitro assay indicated that HA-Apa-Lip@PB-CS-6 NPs can synergistically inhibit proliferation and invasion/metastasis of BGC-823 cells via downregulating vascular endothelial growth factor receptor(VEGFR)and matrix metalloproteinase-9(MMP-9).In vivo assay demonstrated strongest anti-tumor growth and liver metastasis of HA-Apa-Lip@PB-CS-6 NPs administration in BGC-823 cells-bearing mice compared with other groups due to the excellent penetration in tumor tissues and outstanding synergistic effects.In summary,we have successfully developed a new nanocomplexes for synchronous Apa/CS-6 delivery and synergistic gastric cancer(GC)therapy. 展开更多
关键词 Apatinib Gamabufotalin Lipid/Prussian blue nanoparticles Gastric cancer
下载PDF
Targeted anti-cancer therapy: Co-delivery of VEGF siRNA and Phenethyl isothiocyanate (PEITC) via cRGD-modified lipid nanoparticles for enhanced anti-angiogenic efficacy 被引量:1
2
作者 Bao Li Haoran Niu +10 位作者 Xiaoyun Zhao Xiaoyu Huang Yu Ding Ke Dang Tianzhi Yang Yongfeng Chen Jizhuang Ma Xiaohong Liu Keda Zhang Huichao Xie Pingtian Ding 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2024年第2期170-187,共18页
Anti-tumor angiogenesis therapy, targeting the suppression of blood vessel growth in tumors, presents a potent approach in the battle against cancer. Traditional therapies have primarily concentrated on single-target ... Anti-tumor angiogenesis therapy, targeting the suppression of blood vessel growth in tumors, presents a potent approach in the battle against cancer. Traditional therapies have primarily concentrated on single-target techniques, with a specific emphasis on targeting the vascular endothelial growth factor, but have not reached ideal therapeutic efficacy. In response to this issue, our study introduced a novel nanoparticle system known as CS-siRNA/PEITC&L-cRGD NPs. These chitosan-based nanoparticles have been recognized for their excellent biocompatibility and ability to deliver genes. To enhance their targeted delivery capability, they were combined with a cyclic RGD peptide (cRGD). Targeted co-delivery of gene and chemotherapeutic agents was achieved through the use of a negatively charged lipid shell and cRGD, which possesses high affinity for integrin αvβ3 overexpressed in tumor cells and neovasculature. In this multifaceted approach, co-delivery of VEGF siRNA and phenethyl isothiocyanate (PEITC) was employed to target both tumor vascular endothelial cells and tumor cells simultaneously. The co-delivery of VEGF siRNA and PEITC could achieve precise silencing of VEGF, inhibit the accumulation of HIF-1α under hypoxic conditions, and induce apoptosis in tumor cells. In summary, we have successfully developed a nanoparticle delivery platform that utilizes a dual mechanism of action of anti-tumor angiogenesis and pro-tumor apoptosis, which provides a robust and potent strategy for the delivery of anti-cancer therapeutics. 展开更多
关键词 ANTI-ANGIOGENESIS Tumor apoptosis nanoparticles VEGF siRNA Hypoxia inducible factor(HIF)-1 protein Phenethyl isothi ocyanate(PEITC)
下载PDF
Effect of Titanium Dioxide Nanoparticles on Growth and Biomass Accumulation in Lettuce (Lactuca sativa)
3
作者 Channa B. Rajashekar Brenden Armstrong 《American Journal of Plant Sciences》 CAS 2024年第1期1-13,共13页
The use of titanium dioxide nanoparticles (nTiO<sub>2</sub>) is gaining interest in agriculture because of their impact on many aspects of plant growth. The present study examines the effects of nTiO<su... The use of titanium dioxide nanoparticles (nTiO<sub>2</sub>) is gaining interest in agriculture because of their impact on many aspects of plant growth. The present study examines the effects of nTiO<sub>2</sub> (5 nm and 10 nm) applied to seeds and the seedlings as a foliar application on various aspects of growth characteristics and biomass accumulation in lettuce (Lactuca sativa, cv. Grand Rapids). Application of 10 nm nTiO<sub>2</sub> to seeds through imbibition resulted in a significant reduction in shoot biomass accumulation while 5 nm nTiO<sub>2</sub> did not affect the biomass accumulation in lettuce. The application of 10 nm nTiO<sub>2</sub> reduced the fresh shoot biomass accumulation by about 18% compared to the control plants. Other growth characteristics such as shoot dry biomass, root fresh and dry biomass, plant height, and leaf area were not affected by the application of both 5 nm and 10 nm nTiO<sub>2</sub>. In addition, foliar application of these nanoparticles to the lettuce seedlings did not have a significant effect on most of the growth parameters examined, and the increasing concentration ranging from 5 nm/L to 400 mg/L did not produce a consistent response in lettuce. Thus, nTiO<sub>2</sub> application to lettuce seeds had a notable negative impact on shoot growth while foliar application did not have a significant effect on many plant growth characteristics. However, foliar applications produced some symptoms of toxicity to the foliage in the form of necrotic or chlorotic patches on the leaves, which were more pronounced with increasing concentrations of both 5 nm and 10 nm nTiO<sub>2</sub>. However, these symptoms were apparent at a concentration as low as 50 mg/L of nTiO<sub>2</sub>. Thus, foliar application of nTiO<sub>2</sub> may not have a significant impact on many of the growth characteristics in lettuce, but it can result in foliar toxicity. 展开更多
关键词 Growth Characteristics LETTUCE nanoparticles Titanium Dioxide TOXICITY
下载PDF
Preparation and characterization of pH-responsive metal-polyphenol structure coated nanoparticles
4
作者 Qile Xia Yan Liang +2 位作者 Ailing Cao Yan Cao Luyun Cai 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1303-1310,共8页
In this paper,tannic acid(TA)and Fe~(3+)were added to form a layer of metal-polyphenol network structure on the surface of the nanoparticles which were fabricated by zein and carbon quantum dots(CQDs)encapsulating phl... In this paper,tannic acid(TA)and Fe~(3+)were added to form a layer of metal-polyphenol network structure on the surface of the nanoparticles which were fabricated by zein and carbon quantum dots(CQDs)encapsulating phlorotannins(PTN).pH-Responsive nanoparticles were prepared successfully(zein-PTN-CQDs-Fe-~Ⅲ).Further,the formation of composite nanoparticles was confirmed by a series of characterization methods.The zeta-potential and Fourier transform infrared spectroscopy data proved that electrostatic interaction and hydrogen bonding are dominant forces to form nanoparticles.The encapsulation efficiency(EE)revealed that metal-polyphenol network structure could improve the EE of PTN.Thermogravimetric analysis and differential scanning calorimetry experiment indicated the thermal stability of zein-PTN-CQDs-Fe~Ⅲnanoparticles increased because of metal-polyphenol network structure.The pH-responsive nanoparticles greatly increased the release rate of active substances and achieved targeted release. 展开更多
关键词 METAL PHLOROTANNINS nanoparticles PH-RESPONSIVE CHARACTERIZATION
下载PDF
Heating of nanoparticles and their environment by laser radiation and applications
5
作者 Victor K.Pustovalov 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第1期78-115,共38页
This review considers the fundamental dynamic processes involved in the laser heating of metal nanoparticles and their subsequent cooling.Of particular interest are the absorption of laser energy by nanoparticles,the ... This review considers the fundamental dynamic processes involved in the laser heating of metal nanoparticles and their subsequent cooling.Of particular interest are the absorption of laser energy by nanoparticles,the heating of a single nanoparticle or an ensemble thereof,and the dissipation of the energy of nanoparticles due to heat exchange with the environment.The goal is to consider the dependences and values of the temperatures of the nanoparticles and the environment,their time scales,and other parameters that describe these processes.Experimental results and analytical studies on the heating of single metal nanoparticles by laser pulses are discussed,including the laser thresholds for initiating subsequent photothermal processes,how temperature influences the optical properties,and the heating of gold nanoparticles by laser pulses.Experimental studies of the heating of an ensemble of nanoparticles and the results of an analytical study of the heating of an ensemble of nanoparticles and the environment by laser radiation are considered.Nanothermometry methods for nanoparticles under laser heating are considered,including changes in the refractive indices of metals and spectral thermometry of optical scattering of nanoparticles,Raman spectroscopy,the thermal distortion of the refractive index of an environment heated by a nanoparticle,and thermochemical phase transitions in lipid bilayers surrounding a heated nanoparticle.Understanding the sequence of events after radiation absorption and their time scales underlies many applications of nanoparticles.The applicationfields for the laser heating of nanoparticles are reviewed,including thermochemical reactions and selective nanophotothermolysis initiated in the environment by laser-heated nanoparticles,thermal radiation emission by nanoparticles and laser-induced incandescence,electron and ion emission of heated nanoparticles,and optothermal chemical catalysis.Applications of the laser heating of nanoparticles in laser nanomedicine are of particular interest.Significant emphasis is given to the proposed analytical approaches to modeling and calculating the heating processes under the action of a laser pulse on metal nanoparticles,taking into account the temperature dependences of the parameters.The proposed models can be used to estimate the parameters of lasers and nanoparticles in the various applicationfields for the laser heating of nanoparticles. 展开更多
关键词 nanoparticles LASER HEATING MODELING Nanothermometry Applications
下载PDF
Rapid Green Synthesis of Silver Nanoparticles by Reishi and Their Antibacterial Activity and Mechanisms
6
作者 Akamu J. Ewunkem T’nasia Priester +4 位作者 Desia Williams Bailey Ariyon Ilunga Tshimanga Brittany Justice Dinesh K. Singh 《Journal of Biomaterials and Nanobiotechnology》 2024年第3期51-63,共13页
Nanotechnology is a rapidly growing field in biomedical engineering with references to efficiency, safety, and cost-effective approaches. Herein, the objective of this study was to examine an innovative approach to ra... Nanotechnology is a rapidly growing field in biomedical engineering with references to efficiency, safety, and cost-effective approaches. Herein, the objective of this study was to examine an innovative approach to rapidly synthesis silver nanoparticles from an aqueous extract of medicinal mushroom Ganoderma lucidum (also known as reishi). The structural and dimensional dispersion of the biosynthesized silver nanoparticles from reishi was confirmed by UV-Vis spectrophotometer (UV-Vis) and Scanning Electron Microscopy (SEM) analysis. Additionally, the biosynthesized silver nanoparticles from resihi were used to explore their potential antimicrobial activity against Staphylococcus aureus and Micrococcus luteus and Escherichia coli and Klebsiella pneumoniae. The results from this study revealed that the silver nanoparticles mediated by reishi adopted a spherical shape morphology with sizes, less than 100 nm and revealed strong absorption plasmon band at 440 nm. Furthermore, the biosynthesized silver nanoparticles from reishi exhibited antibacterial activity against the tested S. aureus and M. luteus and E. coli and K. pneumoniae by altering their morphology which signifies their biomedical potential. 展开更多
关键词 NANOTECHNOLOGY REISHI nanoparticles ANTIMICROBIAL Green Synthesis
下载PDF
Porous silica nano-flowers stabilized Pt-Pd bimetallic nanoparticles as heterogeneous catalyst for efficiently synthesizing guaiacol from 2-methoxycyclohexanol
7
作者 Junbo Feng Junyan Wu +1 位作者 Dongdong Yan Yadong Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期222-233,共12页
Porous silica nano-flowers(KCC-1)immobilized Pt-Pd alloy NPs(Pt-Pd/KCC-1)with different mass ratios of Pd and Pt were successfully prepared by a facile in situ one-step reduction,using hydrazinium hydroxide as a reduc... Porous silica nano-flowers(KCC-1)immobilized Pt-Pd alloy NPs(Pt-Pd/KCC-1)with different mass ratios of Pd and Pt were successfully prepared by a facile in situ one-step reduction,using hydrazinium hydroxide as a reducing agent.The as-synthesized silica nanospheres possess radial fibers with a distance of 15 nm,exhibiting a high specific surface area(443.56 m^(2)·g^(-1)).Meanwhile,the obtained Pt-Pd alloy NPs are uniformly dispersed on the silica surface with a metallic particle size of 4-6 nm,which exist as metallic Pd and Pt on the surface of monodisperse KCC-1,showing the transfer of electrons from Pd to Pt.The as-synthesized 2.5%Pt-2.5%Pd/KCC-1 exhibited excellent catalytic activity and stability for the continuous dehydrogenation of 2-methoxycyclohexanol to prepare guaiacol.Compared with Pt or Pd single metal supported catalysts,the obtained 2.5%Pt-2.5%Pd/KCC-1 shows 97.2%conversion rate of 2-methoxycyclohexanol and 76.8%selectivity for guaiacol,which attributed to the significant synergistic effect of bimetallic Pt-Pd alloy NPs.Furthermore,turn over frequency value of the obtained 2.5%Pt-2.5%Pd/KCC-1 NPs achieved 4.36 s^(-1),showing higher catalytic efficiency than other two monometallic catalysts.Reaction pathways of dehydro-aromatization of 2-methoxycyclohexanol over the obtained catalyst are proposed.Consequently,the obtained 2.5%Pt-2.5%Pd/KCC-1 NPs prove their potential in the dehydrogenation of 2-methoxycyclohexanol,while the kinetics and mechanistic study of the dehydrogenation reaction over the catalyst in a continuous fixed-bed reactor may provide valuable information for the development of green,outstanding and powerful synthetic pathway of guaiacol. 展开更多
关键词 Supported catalyst nanoparticles Dehydrogenation 2-Methoxycyclohexanol GUAIACOL
下载PDF
Isoindigo nanoparticles for photoacoustic imaging-guided tumor photothermal therapy
8
作者 Yao Pei Ran Wang +9 位作者 Xiang Rong Xiang Xia Hexiang Wang Zongwei Zhang Tian Qiu Saran Long Jianjun Du Jiangli Fan Wen Sun Xiaojun Peng 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第8期19-25,共7页
The key factor in photothermal therapy lies in the selection of photothermal agents.Traditional photothermal agents generally have problems such as poor photothermal stability and low photothermal conversion efficienc... The key factor in photothermal therapy lies in the selection of photothermal agents.Traditional photothermal agents generally have problems such as poor photothermal stability and low photothermal conversion efficiency.Herein,we have designed and synthesized an isoindigo(IID)dye.We used isoindigo as the molecular center and introduced common triphenylamine and methoxy groups as rotors.In order to improve the photothermal stability and tumor targeting ability,we encapsulated IID into nanoparticles.As a result,the nanoparticles exhibited high photothermal stability and photothermal conversion efficiency(67%)upon 635 nm laser irradiation.Thus,the nanoparticles demonstrated a significant inhibitory effect on live tumors in photothermal therapy guided by photoacoustic imaging and provided a viable strategy to overcome the treatment challenges. 展开更多
关键词 Photothermal therapy Isoindigo nanoparticles Photoacoustic imaging
下载PDF
Synthesis of Silver Nanoparticles from Honeybees and Its Antibacterial Potential
9
作者 Akamu J. Ewunkem Niore’s Johnson +3 位作者 A’lyiha F. Beard Ilunga Tshimanga Brittany Justice Jeffery Meixner 《Open Journal of Medical Microbiology》 2024年第1期77-92,共16页
Honeybees (Apis mellifera) are important pollinators of flowering plants and agricultural crops contributing annually to billions of dollars in revenues to crop production. Honeybees have an average lifespan between 8... Honeybees (Apis mellifera) are important pollinators of flowering plants and agricultural crops contributing annually to billions of dollars in revenues to crop production. Honeybees have an average lifespan between 8 weeks to 5 years. Dead honeybees are abundantly available in beehives and can be utilized as an alternative source to synthesize nanoparticles. In recent years, biologically synthesized nanoparticles have been preferred over their chemical counterparts. However, honeybee-based-green synthesis of nanoparticles has not been explored yet. Herein, we report the biosynthesis of silver nanoparticles from honeybees and its antibacterial activity. The synthesis of silver nanoparticles was monitored visually through a gradual change in color. Furthermore, the biosynthesized nanoparticles were confirmed and characterized by UV-visible spectroscopy. Scanning Electron Microscope was utilized to analyze the average size and morphologies of the biosynthesized nanoparticles. Subsequently, the antibacterial potential of the biosynthesized silver nanoparticles was tested against selected Gram-positive and Gram-negative bacterial strains. It was found that a distinct color change from yellow to brown in the reaction solution suggested the formation of silver nanoparticles. The biosynthesized nanoparticles exhibited absorption maxima at 430 nm. The SEM analysis confirmed the spherical and cuboidal shape of the biosynthesized silver nanoparticles with a size range between 10 - 40 nm. Furthermore, the biosynthesized silver nanoparticles exhibited strong antimicrobial potential against tested Gram-positive and Gram-negative bacteria strains by aggregating on the cell surface. This study showcases the biomedical and agricultural applications of biosynthesized silver nanoparticles from honeybee wings. . 展开更多
关键词 HONEYBEE BACTERIA Green Synthesis nanoparticles ANTIMICROBIAL
下载PDF
Green Synthesis of Iron(Ⅱ,Ⅲ)-polyphenol Nanoparticles and Their Adsorption of Malachite Green
10
作者 胡玉 ZHOU Fan +5 位作者 ZHANG Nan PAN Xiaobin LI Shiying ZHANG Dong LI Li 张玲帆 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期1025-1030,共6页
Three kinds of iron nanoparticles(FeNPs)were prepared via green route based on pomegranate(PG),green tea(GT),and mulberry(ML)extracts under ambient conditions.The obtained materials were characterized by scanning elec... Three kinds of iron nanoparticles(FeNPs)were prepared via green route based on pomegranate(PG),green tea(GT),and mulberry(ML)extracts under ambient conditions.The obtained materials were characterized by scanning electron microscopy(SEM),transmission electronic microscopy(TEM),X-ray energy-dispersive spectrometer(EDS),X-ray diffraction(XRD),fourier transform infrared spectroscopy(FTIR),and X-ray photoelectron spectroscopy(XPS)techniques.The experimental results show that FeNPs were in the form of amorphous iron(Ⅱ,Ⅲ)-polyphenol complex with different dispersity and morphologies.GT-Fe has the smallest size range of 25-35 nm,PG-Fe has a moderate size-distribution of 30-40 nm,while ML-Fe formed a tuberous net-type with a sheeting structure.PG-Fe displays the highest removal efficiency of 90.2%in 20 min towards cationic dye of malachite green(16.6%by ML-Fe and 69.3%by GT-Fe),which is attributed to its highest polyphenol content,lowest zeta potential,as well as the most Fe^(2+)on the surface of FeNPs.The removal mechanism was mainly induced by electrostatic adsorption based on pH and zeta potential tests. 展开更多
关键词 IRON nanoparticles POMEGRANATE green tea MULBERRY ADSORPTION
下载PDF
Green Synthesis of Silver Nanoparticles Using Aqueous Orange and Lemon Peel Extract and Evaluation of Their Antimicrobial Properties
11
作者 Amra Bratovcic Amna Dautovic 《Advances in Nanoparticles》 CAS 2024年第2期11-28,共18页
Green synthesis of silver nanoparticles (AgNPs) using aqueous extracts of orange and lemon peels, as a reducing agent, and silver nitrate salts as a source of silver ions is a promising field of research due to the ve... Green synthesis of silver nanoparticles (AgNPs) using aqueous extracts of orange and lemon peels, as a reducing agent, and silver nitrate salts as a source of silver ions is a promising field of research due to the versatility of biomedical applications of metal nanoparticles. In this paper, AgNPs were synthetized at different reaction parameters such as the type and concentration of the extracts, metal salt concentration, temperature, speed stirring, and pH. The antibacterial properties of the obtained silver nanoparticles against E. coli, as well as the physical and chemical characteristics of the synthesized silver nanoparticles, were investigated. UV-Vis spectroscopy was used to confirm the formation of AgNPs. In addition to green biogenic synthesis, chemical synthesis of silver nanoparticles was also carried out. The optimal temperature for extraction was 65˚C, while for the synthesis of AgNPs was 35˚C. The synthesis is carried out in an acidic environment (pH = 4.7 orange and pH = 3.8 lemon), neutral (pH = 7) and alkaline (pH = 10), then for different concentrations of silver nitrate solution (0.5 mM - 1 mM), optimal time duration of the reaction was 60 min and optimal stirring speed rotation was 250 rpm on the magnetic stirrer. The physical properties of the synthesized silver nanoparticles (conductivity, density and refractive index) were also studied, and the passage of laser light through the obtained solution and distilled water was compared. Positive inhibitory effect on the growth of new Escherichia coli colonies have shown AgNPs synthesized at a basic pH value and at a 0.1 mM AgNO<sub>3</sub> using orange or lemon peel extract, while for a 0.5 mM AgNO<sub>3 </sub>using lemon peel extract. 展开更多
关键词 Green Synthesis Silver nanoparticles Orange and Lemon Peel Extract Antibacterial Activity Escherichia coli
下载PDF
Fast synthesis of gold nanoparticles by cold atmospheric pressure plasma jet in the presence of Au^(+) ions and a capping agent
12
作者 Tatiana HABIB José Mauricio A.CAIUT Bruno CAILLIER 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第7期108-115,共8页
Homogeneous gold nanoparticles were synthesized under atmospheric pressure using a nonthermal helium plasma jet in a single-step process.A current power supply was used to generate the plasma discharge rich in diverse... Homogeneous gold nanoparticles were synthesized under atmospheric pressure using a nonthermal helium plasma jet in a single-step process.A current power supply was used to generate the plasma discharge rich in diverse reactive species.These species induce rapid chemical reactions responsible for the reduction of the gold salts upon contact with the liquid solution.In this study,spherical and monodispersed gold nanoparticles were obtained within 5 min of plasma exposure using a solution containing gold(Ⅲ)chloride hydrate(HAuCl_(4))as a precursor and polyvinylpyrrolidone(PVP)as a capping agent to inhibit agglomerations.The formation of these metal nanoparticles was initially perceptible through a visible change in the sample's color,transitioning from light yellow to a red/pink color.This was subsequently corroborated by UVvis spectroscopy,which revealed an optical absorption in the 520-550 nm range for Au NPs,corresponding to the surface plasmon resonance(SPR)band.An investigation into the impact of various parameters,including plasma discharge duration,precursor and capping agent concentrations,was carried out to optimize conditions for the formation of well-separated,spherical gold nanoparticles.Dynamic light scattering(DLS)was used to measure the size of these nanoparticles,transmission electron microscopy(TEM)was used to observe their morphology and X-ray diffraction(XRD)was also employed to determine their crystallographic structure.The results confirm that homogeneous spherical gold nanoparticles with an average diameter of 13 nm can be easily synthesized through a rapid,straightforward,and environmentally friendly approach utilizing a helium atmospheric pressure plasma. 展开更多
关键词 gold nanoparticles NON-THERMAL plasma jet HELIUM DBD
下载PDF
Wide frequency phonons manipulation in Si nanowire by introducing nanopillars and nanoparticles
13
作者 李亚涛 刘英光 +3 位作者 李鑫 李亨宣 王志香 张久意 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期78-84,共7页
The combination of different nanostructures can hinder phonons transmission in a wide frequency range and further reduce the thermal conductivity(TC).This will benefit the improvement and application of thermoelectric... The combination of different nanostructures can hinder phonons transmission in a wide frequency range and further reduce the thermal conductivity(TC).This will benefit the improvement and application of thermoelectric conversion,insulating materials and thermal barrier coatings,etc.In this work,the effects of nanopillars and Ge nanoparticles(GNPs)on the thermal transport of Si nanowire(SN)are investigated by nonequilibrium molecular dynamics(NEMD)simulation.By analyzing phonons transport behaviors,it is confirmed that the introduction of nanopillars leads to the occurrence of lowfrequency phonons resonance,and nanoparticles enhance high-frequency phonons interface scattering and localization.The results show that phonons transport in the whole frequency range can be strongly hindered by the simultaneous introduction of nanopillars and nanoparticles.In addition,the effects of system length,temperature,sizes and numbers of nanoparticles on the TC are investigated.Our work provides useful insights into the effective regulation of the TC of nanomaterials. 展开更多
关键词 resonant structure nanoparticles NANOPILLARS phonon transport thermal conductivity
下载PDF
Eudragit®-PEG Nanoparticles: Physicochemical Characterization and Interfacial Tension Measurements
14
作者 Papa Mady Sy Sidy Mouhamed Dieng +4 位作者 Alphonse Rodrigue Djiboune Louis Augustin Diaga Diouf Boucar Ndong Gora Mbaye Mounibé Diarra 《Open Journal of Biophysics》 2024年第2期121-131,共11页
The objectives of this study are to understand the mechanisms involved in the stabilization of water/oil interfaces by polymeric nanoparticles (NPs) (Eudragit®). Eudragit L100 NPs of various sizes and Zeta potent... The objectives of this study are to understand the mechanisms involved in the stabilization of water/oil interfaces by polymeric nanoparticles (NPs) (Eudragit®). Eudragit L100 NPs of various sizes and Zeta potentials were studied and compared at a water/cyclohexane model interface using a droplet tensiometer (Tracker Teclis, Longessaigne, France). The progressive interfacial adsorption of the NPs in the aqueous phase was monitored by tensiometry. The model interface was maintained and observed in a drop tensiometer, analyzed via axisymmetric drop shape analysis (ADSA), to determine the interfacial properties. Given the direct relationship between the stability of Pickering emulsions (emulsions stabilized by solid nanoparticles) and the interfacial properties of these layers, different nanoparticle systems were compared. Specifically, Eudragit NPs of different sizes were examined. Moreover, the reduction of the Zeta potential with PEG-6000 induces partial aggregation of the NPs (referred to as NP flocs), significantly impacting the stability of the interfacial layer. Dynamic surface tension measurements indicate a significant decrease in interfacial tension with Eudragit® nanoparticles (NPs). This reduction correlates with the size of the NPs, highlighting that this parameter does not operate in isolation. Other factors, such as the contact angle and wettability of the nanoparticles, also play a critical role. Notably, larger NPs further diminished the interfacial tension. This study enhances our understanding of the stability of Pickering emulsions stabilized by Eudragit® L100 polymeric nanoparticles. 展开更多
关键词 nanoparticles Eudragit® PEG Interfacial Tension Pickering Emulsion
下载PDF
Experimental study of the influencing factors and mechanisms of the pressure-reduction and augmented injection effect by nanoparticles in ultra-low permeability reservoirs
15
作者 Pan Wang Yu-Hang Hu +8 位作者 Liao-Yuan Zhang Yong Meng Zhen-Fu Ma Tian-Ru Wang Zi-Lin Zhang Ji-Chao Fang Xiao-Qiang Liu Qing You Yan Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1915-1927,共13页
Nanoparticles(NPs)have gained significant attention as a functional material due to their ability to effectively enhance pressure reduction in injection processes in ultra-low permeability reservoirs.NPs are typically... Nanoparticles(NPs)have gained significant attention as a functional material due to their ability to effectively enhance pressure reduction in injection processes in ultra-low permeability reservoirs.NPs are typically studied in controlled laboratory conditions,and their behavior in real-world,complex environments such as ultra-low permeability reservoirs,is not well understood due to the limited scope of their applications.This study investigates the efficacy and underlying mechanisms of NPs in decreasing injection pressure under various injection conditions(25—85℃,10—25 MPa).The results reveal that under optimal injection conditions,NPs effectively reduce injection pressure by a maximum of 22.77%in core experiment.The pressure reduction rate is found to be positively correlated with oil saturation and permeability,and negatively correlated with temperature and salinity.Furthermore,particle image velocimetry(PIV)experiments(25℃,atmospheric pressure)indicate that the pressure reduction is achieved by NPs through the reduction of wall shear resistance and wettability change.This work has important implications for the design of water injection strategies in ultra-low permeability reservoirs. 展开更多
关键词 nanoparticlE Pressure reduction Augmented injection Ultra-low permeability reservoir
下载PDF
Charcoal Nanoparticles as a Delivery System for Doxorubicin and Sorafenib in Treatment of Hepatocellular Carcinoma
16
作者 Aisha Elgurashi Abdulla Toga Khalid Mohamed Gader +3 位作者 Marvit Osman Widdatallah Omer Abdullah E. Gouda Samah Mamdouh Mohamed A. Shemis 《Advances in Nanoparticles》 CAS 2024年第3期45-60,共16页
Background: Hepatocellular carcinoma (HCC) is the most common type of liver cancer and one of the leading causes of cancer-related death worldwide. Advanced HCC displays strong resistance to chemotherapy, and traditio... Background: Hepatocellular carcinoma (HCC) is the most common type of liver cancer and one of the leading causes of cancer-related death worldwide. Advanced HCC displays strong resistance to chemotherapy, and traditional chemotherapy drugs do not achieve satisfactory therapeutic efficacy. The delivery of therapeutic compounds to the target site is a major challenge in the treatment of many diseases. Objective: This study aims to evaluate activated charcoal nanoparticles as a drug delivery system for anticancer agents (Sorafenib and Doxorubicin) in Hepatocellular Cancer Stem Cells. Method: The percent efficiency of entrapment (% EE) of the doxorubicin and sorafenib entrapped onto the activated charcoal was obtained by determining the free doxorubicin and sorafenib concentration in the supernatant-prepared solutions. Then the characterizations of nanoparticles were formed by determination of the particle size distribution, zeta potential, and polydispersity index (PDI). The anticancer activity of activated Charcoal, Doxorubicin-ACNP, sorafenib-ACNP, free doxorubicin, and free sorafenib solutions was measured based on cell viability percentage in HepG2 cell lines (ATCC-CCL 75). In vitro RBC’s toxicity of Doxorubicin/sorafenib loaded charcoal was estimated by hemolysis percentage. Results: The synthesized Doxorubicin-ACNP and Sorafenib-ACNP were evaluated and their physiochemical properties were also examined. Essentially, the percent Efficiency of Entrapment (EE %) was found to be 87.5% and 82.66% for Doxorubicin-ACNP and Sorafenib-ACNP, respectively. The loading capacity was 34.78% and 24.31% for Doxorubicin-ACNP and Sorafenib-ACNP. Using the Dynamic Light scattering [DLS] for the determination of the hydrodynamic size and surface zeta potential, a narrow sample size distribution was obtained of (18, 68, and 190 nm for charcoal, 105, 255, and 712 nm for doxorubicin, and 91, 295, and 955 nm for sorafenib), respectively. A surface charge of −13.2, −15.6 and −17 was obtained for charcoal, doxorubicin/charcoal, and sorafenib/charcoal nanoparticles. The cytotoxic activity of Doxorubicin-ACNP and Sorafenib-ACNP was evaluated in-vitro against HepG2 cell lines and it was observed that Drug loaded ACNP improved anticancer activity when compared to Doxorubicin or Sorafenib alone. Moreover, testing the toxicity potential of DOX-ACNP and Sorafenib-ACNP showed a significant reduction in the hemolysis of red blood cells when compared to Doxorubicin and Sorafenib alone. Conclusion: In conclusion, it is notable to state that this study is regarded as the first to investigate the use of Activated charcoal for the loading of Doxorubicin and Sorafenib for further use in the arena of hepatocellular carcinoma. Doxorubicin-ACNP and Sorafenib-ACNP showed noteworthy anticancer activity along with a reduced potential of RBCs hemolysis rendering it as an efficacious carrier with a low toxicity potential. 展开更多
关键词 Activated Charcoal nanoparticles (ACNP) Drug Delivery System Sorafenib and Doxorubicin Hepatocellular Cancer Stem Cells
下载PDF
Advances of Synergistic Electrocatalysis Between Single Atoms and Nanoparticles/Clusters
17
作者 Guanyu Luo Min Song +6 位作者 Qian Zhang Lulu An Tao Shen Shuang Wang Hanyu Hu Xiao Huang Deli Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期377-412,共36页
Combining single atoms with clusters or nanoparticles is an emerging tactic to design efficient electrocatalysts.Both synergy effect and high atomic utilization of active sites in the composite catalysts result in enh... Combining single atoms with clusters or nanoparticles is an emerging tactic to design efficient electrocatalysts.Both synergy effect and high atomic utilization of active sites in the composite catalysts result in enhanced electrocatalytic performance,simultaneously provide a radical analysis of the interrelationship between structure and activity.In this review,the recent advances of single-atomic site catalysts coupled with clusters or nanoparticles are emphasized.Firstly,the synthetic strategies,characterization,dynamics and types of single atoms coupled with clusters/nanoparticles are introduced,and then the key factors controlling the structure of the composite catalysts are discussed.Next,several clean energy catalytic reactions performed over the synergistic composite catalysts are illustrated.Eventually,the encountering challenges and recommendations for the future advancement of synergistic structure in energy-transformation electrocatalysis are outlined. 展开更多
关键词 Single atoms nanoparticles CLUSTERS Synergistic composite catalysts Synergistic effect
下载PDF
Biological Interaction and Imaging of Ultrasmall Gold Nanoparticles
18
作者 Dongmiao Sang Xiaoxi Luo Jinbin Liu 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期69-98,共30页
Ultrasmall gold nanoparticles(AuNPs)typically includes atomically precise gold nanoclusters(AuNCs)and AuNPs with a core size below 3 nm.Serving as a bridge between small molecules and traditional inorganic nanoparticl... Ultrasmall gold nanoparticles(AuNPs)typically includes atomically precise gold nanoclusters(AuNCs)and AuNPs with a core size below 3 nm.Serving as a bridge between small molecules and traditional inorganic nanoparticles,the ultrasmall AuNPs show the unique advantages of both small molecules(e.g.,rapid distribution,renal clearance,low non-specific organ accumulation)and nanoparticles(e.g.,long blood circulation and enhanced permeability and retention effect).The emergence of ultrasmall AuNPs creates significant opportunities to address many challenges in the health field including disease diagnosis,monitoring and treatment.Since the nano–bio interaction dictates the overall biological applications of the ultrasmall AuNPs,this review elucidates the recent advances in the biological interactions and imaging of ultrasmall AuNPs.We begin with the introduction of the factors that influence the cellular interactions of ultrasmall AuNPs.We then discuss the organ interactions,especially focus on the interactions of the liver and kidneys.We further present the recent advances in the tumor interactions of ultrasmall AuNPs.In addition,the imaging performance of the ultrasmall AuNPs is summarized and discussed.Finally,we summarize this review and provide some perspective on the future research direction of the ultrasmall AuNPs,aiming to accelerate their clinical translation. 展开更多
关键词 Ultrasmall gold nanoparticle Cellular interaction Organ interaction Tumor interaction BIOIMAGING
下载PDF
Immunomodulatory activity of polycaprolactone nanoparticles with calcium phosphate salts against Leishmania infantum infection
19
作者 Kübra Kelleci Adil Allahverdiyev +2 位作者 Melahat Bağırova Murat Ihlamur EmrahŞefik Abamor 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2024年第8期359-368,共10页
Objective:To prepare and characterize polycaprolactone(PCL)nanoparticles loaded with sonicator fragmented(SLA)and freeze-thaw Leishmania antigens(FTLA)and to investigate the in vitro immunogenicity of antigen-encapsul... Objective:To prepare and characterize polycaprolactone(PCL)nanoparticles loaded with sonicator fragmented(SLA)and freeze-thaw Leishmania antigens(FTLA)and to investigate the in vitro immunogenicity of antigen-encapsulated nanoparticles with calcium phosphate adjuvant.Methods:The water/oil/water binary emulsion solvent evaporation method was used to synthesize antigen-loaded PCL nanoparticles.Particles were characterized by scanning electron microscopy and zeta potential measurements.Their cytotoxicity in J774 macrophages in vitro was determined by MTT analysis.In addition,the amount of nitric oxide and the level of cytokines produced by macrophages were determined by Griess reaction and ELISA method,respectively.The protective effect of the developed formulations was evaluated by determining the infection index percentage in macrophages infected with Leishmania infantum.Results:Compared to the control group,SLA PCL and FTLA PCL nanoparticles with calcium phosphate adjuvant induced a 6-and 7-fold increase in nitric oxide,respectively.Additionally,the vaccine formulations promoted the production of IFN-γand IL-12.SLA PCL and FTLA PCL nanoparticles combined with calcium phosphate adjuvant caused an approximately 13-and 11-fold reduction in infection index,respectively,compared to the control group.Conclusions:The encapsulation of antigens obtained by both sonication and freeze-thawing into PCL nanoparticles and the formulations with calcium phosphate adjuvant show strong in vitro immune stimulating properties.Therefore,PCL-based antigen delivery systems and calcium phosphate adjuvant are recommended as a potential vaccine candidate against leishmaniasis. 展开更多
关键词 LEISHMANIASIS Calcium phosphate POLYCAPROLACTONE nanoparticlE Antigen delivery system ADJUVANT Vaccine design
下载PDF
One-Step to Prepare Lignin Based Fluorescent Nanoparticles with Excellent Radical Scavenging Activity
20
作者 Xujing Zhang Hatem Abushammala +4 位作者 Debora Puglia Binbao Lu Pengwu Xu Weijun Yang Piming Ma 《Journal of Renewable Materials》 EI CAS 2024年第5期895-908,共14页
Fluorescent nanomaterials have attracted much attention,due to their unique luminescent properties and promis-ing applications in biomedical areas.In this study,lignin basedfluorescent nanoparticles(LFNP)with high yiel... Fluorescent nanomaterials have attracted much attention,due to their unique luminescent properties and promis-ing applications in biomedical areas.In this study,lignin basedfluorescent nanoparticles(LFNP)with high yield(up to 32.4%)were prepared from lignin nanoparticles(LNP)by one-pot hydrothermal method with ethylene-diamine(EDA)and citric acid.Morphology and chemical structure of LFNP were investigated by SEM,FT-IR,and zeta potential,and it was found that the structure of LFNP changed with the increase of citric acid addition.LFNP showed the highestfluorescence intensity under UV excitation at wavelengths of 375–385 nm,with emis-sion wavelengths between 454–465 nm,and exhibited strong photoluminescence behavior.Meanwhile,with the increase of citric acid content,the energy gap(ΔE)gradually decreased from 3.87 to 3.14 eV,which corresponds to the gradual enhancement offluorescence performance.LFNP also exhibited excellent antioxidant activity,with DPPH free radical scavenging rate increased from 80.8%for LNP up to 96.7%for LFNP,confirming the great potential of these materials for application in biomedicine and cosmetic health care. 展开更多
关键词 LIGNIN fluorescent nanoparticles bioactivity photoluminescence mechanism
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部